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A comparison of Bayesian and likelihood-based

methods for fitting multilevel models

William J. Browne∗, and David Draper†

Abstract. We use simulation studies, whose design is realistic for educational
and medical research (as well as other fields of inquiry), to compare Bayesian and
likelihood-based methods for fitting variance-components (VC) and random-effects
logistic regression (RELR) models. The likelihood (and approximate likelihood)
approaches we examine are based on the methods most widely used in current ap-
plied multilevel (hierarchical) analyses: maximum likelihood (ML) and restricted
ML (REML) for Gaussian outcomes, and marginal and penalized quasi-likelihood
(MQL and PQL) for Bernoulli outcomes. Our Bayesian methods use Markov
chain Monte Carlo (MCMC) estimation, with adaptive hybrid Metropolis-Gibbs
sampling for RELR models, and several diffuse prior distributions (Γ−1(ε, ε) and
U(0, 1

ε
) priors for variance components). For evaluation criteria we consider bias

of point estimates and nominal versus actual coverage of interval estimates in re-
peated sampling. In two-level VC models we find that (a) both likelihood-based
and Bayesian approaches can be made to produce approximately unbiased esti-
mates, although the automatic manner in which REML accomplishes this is an
advantage, but (b) both approaches had difficulty achieving nominal coverage in
small samples and with small values of the intraclass correlation. With the three-
level RELR models we examine we find that (c) quasi-likelihood methods for esti-
mating random-effects variances perform badly with respect to bias and coverage
in the example we simulated, and (d) Bayesian diffuse-prior methods lead to well-
calibrated point and interval RELR estimates. While it is true that the likelihood-
based methods we study are considerably faster computationally than MCMC,
(i) steady improvements in recent years in both hardware speed and efficiency of
Monte Carlo algorithms and (ii) the lack of calibration of likelihood-based methods
in some common hierarchical settings combine to make MCMC-based Bayesian fit-
ting of multilevel models an attractive approach, even with rather large data sets.
Other analytic strategies based on less approximate likelihood methods are also
possible but would benefit from further study of the type summarized here.
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1 Introduction

Multilevel models, for data possessing a nested hierarchy and—more generally—for
the expression of uncertainty at several levels of aggregation, have gained dramati-
cally in scope of application in the past 15 years, in fields as diverse as education and
health policy (e.g., Goldstein et al. (1993), Draper (1995), Goldstein and Spiegelhalter
(1996)). Statisticians and substantive researchers who use such models now have a vari-
ety of options in approaches to inference, with a corresponding variety of computer pro-
grams: to mention four, the maximum-likelihood (ML) Fisher-scoring approach in VARCL

(Longford (1987)); ML via iterative generalized least squares (IGLS) and restricted
IGLS (RIGLS, or REML) for Gaussian outcomes, and quasi-likelihood methods (MQL
and PQL) for dichotomous outcomes, in MLwiN (Goldstein (1986, 1989), Rasbash et al.
(2005)); empirical-Bayes estimation using the EM algorithm in HLM (Raudenbush et al.
(2005)); and fully-Bayesian inference in WinBUGS (Spiegelhalter et al. (2003)) and MLwiN.
This variety of fitting methods can lead to confusion, however: ML and Bayesian anal-
yses of the same data can produce rather different point and interval estimates, and the
applied multilevel modeler may well be left wondering what to report.

1.1 Example 1: The Junior School Project

The Junior School Project (JSP; Mortimore et al. (1988), Woodhouse et al. (1995)) was
a longitudinal study of about 2,000 pupils from 50 primary schools chosen randomly
from the 636 Inner London Education Authority (ILEA) schools in 1980. Here we will
examine a random subsample of N = 887 students taken from J = 48 schools. A
variety of measurements were made on the students during the four years of the study,
including background variables (such as gender, age at entry, ethnicity, and social class)
and measures of educational outcomes such as mathematics test scores (on a scale from 0
to 40) at year 3 (math3) and year 5 (math5). Both mathematics scores had distributions
with negative skew due to a ceiling effect, with some students piling up at the maximum
score, but transformations to normality produced results almost identical to those using
the raw data (we report the latter). A principal goal of the study was to establish
whether some schools were more effective than others in promoting pupils’ learning and
development, after adjusting for background differences.

Two simple baseline analyses that might be undertaken early on, before more com-
plicated modeling, are as follows.

• Thinking (incorrectly) of the data as a simple random sample (SRS) from the
population of ILEA pupils in the early 1980s, the mean mathematics score β0 at
year 5 would be estimated as 30.6 with a repeated-sampling standard error (SE) of
0.22, but this ignores the large estimated intraclass (intracluster; within-school)
correlation of ρ̂ = +0.12 for this variable. The correct SE, from standard survey-
sampling results (e.g., Cochran (1977)) or the Huber-White sandwich estimator
(Huber (1967), White (1980), as implemented in the package Stata: StataCorp
(2006)), is 0.43, almost double the SRS value. There is clearly scope for multilevel
modeling here to account correctly for the nested structure of the data. (0.12 may
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Table 1: A comparison of ML, REML, and Bayesian fitting (with a diffuse prior) in model

(1) applied to the JSP data. Figures in parentheses in the upper table are SEs (for the ML

methods) or posterior SDs (for the Bayesian method). Bayesian point estimates are posterior

means, and 95% central posterior intervals are reported.

Point Estimates Parameter
Method β0 σ2

u σ2
e

ML 30.6 5.16 39.3
(0.400) (1.55) (1.92)

REML 30.6 5.32 39.3
(0.404) (1.59) (1.92)

Bayesian with 30.6 6.09 39.5
diffuse priors (0.427) (1.91) (1.94)

95% Interval Estimates Parameter

Method β0 σ2
u σ2

e

REML (Gaussian) (29.8, 31.4) (2.22, 8.43) (35.5, 43.0)

Bayesian (29.8, 31.5) (3.18, 10.6) (35.9, 43.5)

not seem like a large value for ρ, but (a) despite its name the intraclass correlation
is in fact comparable to a regression-style R2 value (e.g., Donner (1986)), and
(b) the design effect (e.g., Cochran (1977)) for estimating β0 in this problem is(

0.43
0.22

)2 .
= 3.8, meaning that the cluster sample of 887 students was equivalent in

information content for β0 (because of the relatively high degree of within-school
similarity of student achievement) to an SRS of only 887

3.8

.
= 230 students.)

• Consider next a variance-components (VC) model,

yij = β0 + uj + eij , i = 1, . . . , nj , j = 1, . . . , J,∑J
j=1 nj = N, uj

IID
∼ N(0, σ2

u), eij
IID
∼ N(0, σ2

e),
(1)

where yij is the math5 score for pupil i in school j; this model would generally
be fit before a random-slopes regression model relating math5 to math3 is exam-
ined. (In our terminology i indexes level 1 of the model and j level 2. (1) is
sometimes referred to as a mixed linear model for its combination of fixed effects

(β0) and random effects (the uj and eij).) As noted above, the parameters in this
model may be estimated in at least two ways: likelihood-based and Bayesian ap-
proaches. Maximum likelihood (ML) in turn may be based on iterative generalized
least squares (IGLS, or some other equivalent method), or approximately unbi-
ased estimation with restricted maximum likelihood (REML, based for instance
on RIGLS) (Goldstein (1986, 1989)) may be preferred. Table 1 presents the re-
sults of ML, REML, and Bayesian fitting of model (1), in the latter case using a
diffuse prior to be discussed in Section 2.3.1 (U

(
0, 1

ε

)
on the variance scale).

While there is little difference in the three methods on point estimates for β0 and
σ2
e and on SEs/posterior standard deviations (SDs) for the latter quantity, (a) the

posterior SD for β0 is about 5% larger than the SE from ML and REML (note
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that the Bayesian uncertainty assessment essentially coincides with the cluster-
sampling SE 0.43 mentioned earlier), (b) the Bayesian estimate of σ2

u is 14–17%

larger than the likelihood estimates, and (c) the posterior SD for σ2
u is 18–21%

larger than the ML/REML SEs. Moreover, the default likelihood results (point
estimates and estimated asymptotic SEs) in the ML computer programs in most
widespread current use do not include interval estimates, encouraging investigators
either to report no intervals at all (a practice to be frowned upon) or to use large-

sample 95% Gaussian intervals of the form (estimate ±1.96 ŜE). The bottom part
of Table 1 compares Gaussian intervals based on REML estimates with Bayesian
95% posterior probability intervals, and it may be seen that in particular the two
methods give quite different answers for σ2

u. What should someone trying to arrive
at substantive conclusions based on the JSP data report?

1.2 Example 2: The Guatemalan Child Health Study

The 1987 Guatemalan National Survey of Maternal and Child Health
(Pebley and Goldman (1992)) was based on a multistage cluster sample of 5,160 women
aged 15–44 years living in 240 communities, with the goal of increased understanding
of the determinants of health for mothers and children in the period during and af-
ter pregnancy. The data have a three-level structure—births within mothers within
communities—and one analysis of particular interest estimated the probability of re-
ceiving modern (physician or trained nurse) prenatal care as a function of covariates
at all three levels. Rodŕıguez and Goldman (1995) studied a subsample of 2,449 births
by 1,558 women who (a) lived in the 161 communities with accurate cluster-level infor-
mation and (b) had some form of prenatal care during pregnancy. The random-effects
logistic regression (RELR) model they examined is

(yijk | pijk)
indep

∼ Bernoulli(pijk) with
logit(pijk) = β0 + β1x1ijk + β2x2jk + β3x3k + ujk + vk,

(2)

where yijk is a binary indicator of modern prenatal care or not and where ujk ∼ N(0, σ2
u)

and vk ∼ N(0, σ2
v). In this formulation i = 1, . . . , Ijk, j = 1, . . . , Jk, and k = 1, . . . K

index the level 1, 2, and 3 units, respectively, corresponding to births, mothers, and
communities, and the variables x1, x2, and x3 are composite scales, because the orig-
inal Pebley-Goldman model contained many covariates at each level. The original
Rodŕıguez-Goldman data set is not publicly available; however, these authors simu-
lated 25 data sets with the same structure but with known parameter values, and they
have kindly made these simulated data sets available to us.

As in Example 1, several likelihood-based and Bayesian fitting methods for model
(2) are available: the main (approximate) likelihood alternatives (e.g., Goldstein (2002))
currently employed with greatest frequency by multilevel modelers in substantive fields
of inquiry (based upon empirical usage in the recent literature) are marginal quasi-
likelihood (MQL) and penalized (or predictive) quasi-likelihood (PQL), in both of which
the investigator has to specify the order of the Taylor-series approximation, and a variety
of prior distributions may be considered in the Bayesian approach. Table 2 summarizes
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Table 2: A comparison of first-order MQL, second-order PQL and Bayesian fitting (with a

diffuse prior) in model (2) applied to the Rodŕıguez-Goldman simulated Guatemalan child health

data set number 1. Figures in square brackets in the upper table are true parameter values;

figures in parentheses in the upper table are SEs (for the ML methods) or posterior SDs (for the

Bayesian method). Bayesian point estimates are posterior means, and 95% central posterior

intervals are reported.

Point Estimates Parameter

Method
β0

[0.65]
β1

[1.0]
β2

[1.0]
β3

[1.0]
σ2
v

[1.0]
σ2
u

[1.0]

MQL1 0.491 0.791 0.631 0.806 0.546 0.000
(0.149) (0.172) (0.081) (0.189) (0.102) —

PQL2 0.641 0.993 0.795 1.06 0.883 0.486
(0.186) (0.201) (0.099) (0.237) (0.159) (0.145)

Bayesian with 0.675 1.050 0.843 1.124 1.043 0.921
diffuse priors (0.209) (0.225) (0.115) (0.268) (0.217) (0.331)

95% Interval Estimates Parameter

Method β0 β1 β2 β3 σ2
v σ2

u

PQL2 (Gaussian) (0.276, (0.599, (0.601, (0.593, (0.571, (0.202,
1.01) 1.39) 0.989) 1.52) 1.19) 0.770)

Bayesian (0.251, (0.611, (0.626, (0.586, (0.677, (0.334,
1.07) 1.50) 1.078) 1.62) 1.52) 1.63)

a comparison between first-order MQL, second-order PQL, and Bayesian fitting—again
with a particular diffuse prior to be discussed in Section 2.3.1 (U

(
0, 1

ε

)
on the variance

scale for small ε)—on the Rodŕıguez-Goldman simulated data set number 1 (the true
values of the parameters are given in the first row of this table). Here the differences
are much more striking than those in Table 1: many MQL estimates are badly biased,
and—although PQL does achieve some improvements—its estimates of β2 and the vari-
ance components are still substantially too low, leading to dramatically different (and
inferior) intervals for the variances. Because we have the luxury of knowing the right
answer in this simulation context, it is easy to see which fitting method has produced
better results on this one data set (and Section 4.2 will demonstrate that this table
accurately reflects the superiority of Bayesian methods in models like (2) when com-
pared with quasi-likelihood approaches, at least in settings similar to the Guatemalan
Health study), but—if the data analyzed in Table 2 arose as the result of an actual
sample survey—a researcher trying to draw substantive conclusions about variability
within and between mothers and communities would certainly wonder which figures to
publish.

1.3 Outline of the paper

Our interest is in comparing likelihood-based and Bayesian methods for fitting variance-
components and random-effects logistic regression models, using bias and interval cov-
erage behavior in repeated sampling as evaluation criteria. Following a brief literature
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review below, Section 2 describes the fitting methods we compare; Sections 3 and 4 cover
simulation study details and results for VC and RELR models, respectively; and Section
5 offers some conclusions and discussion. Browne and Draper (2000) and Browne et al.
(2002) contain results that parallel those presented here for random-slopes regression
models and multilevel models with heteroscedasticity at level 1, respectively.

We focus in this paper on the likelihood-based (and approximate likelihood) meth-
ods most readily available (given current usage patterns of existing software) to statis-
ticians and substantive researchers making frequent use of multilevel models: ML
and REML in VC models, and MQL and PQL in RELR models. Other promis-
ing likelihood-based approaches—including (a) methods based on Gaussian quadra-
ture (e.g., Pinheiro and Bates (1995); see Section 5 for a software discussion); (b)
the nonparametric maximum likelihood methods of Aitkin (1999a); (c) the Laplace-
approximation approach of Raudenbush et al. (2000); (d) the work on hierarchical gen-
eralized linear models of Lee and Nelder (2001); and (e) interval estimation based on
ranges of values of the parameters for which the log likelihood is within a certain distance
of its maximum, for instance using profile likelihood (e.g., Longford (2000))—are not
addressed here. It is evident from the recent applied literature that, from the point of
view of multilevel analyses currently being conducted to inform educational and health
policy choices and other substantive decisions, the use of methods (a–e) is not (yet) as
widespread as REML and quasi-likelihood approaches. In particular, methods such as
Gaussian quadrature may produce poor results in RELR models if not used carefully
(see Lesaffre and Spiessens (2001) for a striking example); we intend to report elsewhere
on a thorough comparison of quadrature with the methods examined here.

Statisticians are well aware that the highly skewed repeated-sampling distributions
of ML estimators of random-effects variances in multilevel models with small sample
sizes are not likely to lead to good coverage properties for large-sample Gaussian ap-
proximate interval estimates of the form σ̂2 ±1.96 ŜE

(
σ̂2

)
, but with few exceptions the

profession has not (yet) responded to this by making software for improved likelihood
interval estimates for variance components widely available to multilevel modelers. In
Sections 3 and 4 we document the extent of the poor coverage behavior of the Gaussian
approach, and we offer several simple approximation methods, based only on informa-
tion routinely output in multilevel software, which exhibit improved (although still not
in many cases satisfactory) performance. Note that we are not advocating interval es-
timates for random-effects variances based on normal approximations in small samples;
we are merely documenting how badly these intervals—which are all that will be read-
ily available to many users of popular likelihood-based software packages—may behave,
even with a variety of improvements to them.

The paper has been constructed so that readers interested in a fast path through it
can proceed directly from this point to Section 5, where a summary of our conclusions
is available.
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1.4 Previous literature on comparisons between multilevel fitting
methods

The literature on Bayesian and likelihood-based methods for fitting VC and RELR
models is vast, e.g., Aitkin (1996, 1999b), Besag et al. (1995), Bryk and Raudenbush
(1992), Corbeil and Searle (1976), Daniels and Gatsonis (1999),
Gelfand and Smith (1990), Goldstein (2002), Harville and Zimmermann (1996),
Kahn and Raftery (1996), Kass and Steffey (1989), Lee and Nelder (1996), Longford
(1987, 1997), and Searle et al. (1992) (for a competing approach based on best linear
unbiased prediction, see, e.g., Henderson (1950) and Robinson (1991)). Comparisons
between multilevel fitting methods are less abundant, but some theoretical work has
been done to demonstrate the equivalence of several of the leading approaches to fitting
multilevel models: for instance, Raudenbush (1994) showed that Fisher scoring is equiv-
alent to ML, and empirical-Bayes estimates based on the EM algorithm may be seen
to coincide with maximum likelihood results in many Gaussian models (e.g., Goldstein
(2002)). Fewer studies are available comparing the performance of the approaches in
terms of bias of point estimates and calibration of interval estimates.

In the VC model (1), Box and Tiao (1973) reviewed results of Klotz et al. (1969)
and Portnoy (1971) which contrast the mean squared error (MSE) behavior of the
following estimators of σ2

u: the classical unbiased estimator based on mean squares (e.g.,
Scheffé (1959)), the ML estimator, and the mean and mode of the marginal posterior
distribution for σ2

u with several choices of relatively diffuse priors. They found, over

all values of the intraclass (intracluster) correlation ρ =
σ2
u

σ2
u+σ2

e
they examined, that (a)

the MSEs of the ML and posterior-mode estimators are comparable and much smaller
than that of the unbiased estimator, and (b) the posterior mean is, by a substantial
margin, the worst estimator on MSE grounds. Box and Tiao criticized MSE as an
arbitrary criterion for performance assessment, and resisted the distillation of an entire
posterior distribution down to a single point estimate. We are sympathetic with their
position—from the Bayesian viewpoint the choice of posterior summaries should ideally
be based on decision criteria arising from possible actions when using models like (1)
and (2) to solve real-world problems—but we nevertheless find it relevant, particularly
in the context of general-purpose multilevel modeling software (where the eventual use
of the output is far from clear), to examine operating characteristics such as bias and
interval coverage. See Rubin (1984) for a good discussion of the relevance of repeated-
sampling properties in Bayesian inference, and Chapter 4 of Carlin and Louis (2001) for
an evaluation in the spirit of the one presented here for some simpler non-hierarchical
Gaussian and binary-outcome models.

Hulting and Harville (1991) compared frequentist and Bayesian methods of fitting
the mixed-effects linear model

y = Xβ + Zs+ e, (3)

where y is an n× 1 vector of quantitative outcomes, β is a p× 1 vector of fixed effects,
X and Z are known matrices, si ∼ N(0, σ2

s), and ei ∼ N(0, σ2
e); the VC model (1) is

a special case of (3). These authors obtained results which have points of contact with
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some of our findings in Section 3.2 below, although Hulting and Harville focused on
predictive inferences about quantities of the form W = λ′β+δ′s and examined different
frequentist estimators than the ones we consider. Chaloner (1987) carried out a similar
frequentist/Bayesian comparison in model (1); however she used different diffuse prior

distributions, focused on the variance ratio τ =
σ2
u

σ2
e

= ρ
1−ρ

in her results on interval

estimation, and conducted a less extensive simulation study than that reported here.
See Swallow and Monahan (1984), Brown and Burgess (1984) and Huber et al. (1994)
for additional simulation results comparing various non-Bayesian estimation methods
in VC models, and Singh et al. (1998) for Bayesian and non-Bayesian comparisons in
small-area estimation.

In model (2), Rodŕıguez and Goldman (1995) used the structure of the Guatemalan
child health study to examine how well quasi-likelihood methods compare with fit-
ting a standard logistic regression model and ignoring the multilevel structure. As
noted in Section 1.2, their approach involved creating simulated data sets based on
the original structure but with known true values for the fixed effects (the βl in model
(2)) and variance parameters. They considered the MQL method and showed that
estimates of the fixed effects produced by MQL were even worse, in terms of bias,
than estimates produced by standard logistic regression disregarding the hierarchical
nature of the data. Goldstein and Rasbash (1996) considered the same problem but
used the PQL method, and showed that the results produced by second-order PQL
estimation were far better than for MQL, but still biased, in the Rodŕıguez-Goldman
problem. Breslow and Clayton (1993) presented some brief comparisons between quasi-
likelihood methods and a version of rejection Gibbs sampling in RELR models proposed
by Zeger and Karim (1991); also see Natarajan and Kass (2000) for simulation results
in a RELR model fit by the Zeger-Karim approach. Rodŕıguez and Goldman (2001)
obtained results that parallel ours (in Section 4.2) with respect to bias of PQL random-
effects variance estimates in REML models (and showed that a parametric bootstrap
approach yields considerable improvement), but they have no corresponding findings on
interval estimates.

2 Methods for fitting multilevel models

2.1 Iterative generalized least squares (IGLS/ML) and restricted ML
(RIGLS/ REML)

Iterative generalized least squares (IGLS/ML; Goldstein (1986)) is a sequential refine-
ment procedure based on GLS estimation. The method can fit all Gaussian multilevel
models, and has been described in detail elsewhere (e.g., Goldstein (2002)). Briefly,
equations such as (1) are expressed in the usual general linear model form Y = Xβ+ e∗

(for example, in (1) X is a vector of 1s, β = β0, and e
∗
ij = uj + eij), in which the vector

e∗ has mean 0 and covariance matrix V ; and then the observation is made that (i) if

V were known, β could be estimated by GLS, yielding β̂, and (ii) if β were known, one
could form the residuals Ỹ = Y −Xβ, calculate Y ∗ = Ỹ Ỹ T , stack the columns of Y ∗

into one long column vector Y ∗∗, and define a linear model Y ∗∗ = Z∗θ+ ε, where Z∗ is
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the design matrix for the random-effects parameters θ (in (1) θ =
(
σ2
u, σ

2
e

)T
). Another

application of GLS then yields θ̂. Starting with an initial estimate of the fixed effect(s)
β from ordinary least squares, IGLS iterates between steps (i) and (ii) to convergence,
which is judged to occur when two successive sets of estimates differ by no more than a
given tolerance (on a component-by-component basis). As with many ML procedures,
IGLS produces biased estimates in small samples, often in particular underestimating
random-effects variances because the sampling variation of β̂ is not accounted for in the

algorithm above. Defining the residuals instead as Ỹ ∗ = Y −Xβ̂ and Ŷ ∗ = Ỹ ∗
(
Ỹ ∗

)T

,

Goldstein (1989) showed that

E(Ŷ ∗) = V −X
(
XTV −1X

)−1
XT , (4)

so that the ML estimates can be bias-adjusted by adding an estimate of the second term
on the right-hand side of (4) to Ŷ ∗ at each iteration. This is restricted IGLS (RIGLS),
which coincides with restricted maximum likelihood (REML) in Gaussian models such
as (1). Estimated asymptotic standard errors of ML and REML estimates are based on

the final values at convergence of the covariance matrices for β̂ and θ̂, expressions for
which are given by Goldstein (2002).

2.2 Marginal and penalized quasi-likelihood (MQL and PQL)

ML and REML are relevant to linear multilevel models with Gaussian outcomes; differ-
ent likelihood-based methods are needed with models for dichotomous outcomes, such as
(2). Following Goldstein (2002), in the simpler case of a two-level structure a reasonably
general multilevel model for the binary outcome yij has the form

(yij | pij) ∼ Bernoulli(pij) with

pij = f
(
Xijβ + Z

(1)
ij eij + Z

(2)
ij uj

)
,

(5)

where f(l) has a nonlinear character such as logit−1(l) =
(
1 + e−l

)−1
. One approach

to the fitting of (5) is through quasi-likelihood methods, which proceed (e.g.,
Breslow and Clayton (1993)) by linearizing the model via Taylor series expansion; for
instance, with Ht as a suitably chosen value around which to expand, the f(·) expression
in (5) for the ijth unit at iteration (t+ 1) may be approximated by

f(Ht) +Xij (βt+1 − βt) f
′(Ht)+(

Z
(1)
ij eij + Z

(2)
ij uj

)
f ′(Ht) +

1
2

(
Z

(1)
ij eij + Z

(2)
ij uj

)2

f ′′(Ht)
(6)

in terms of parameter values estimated at iteration t. The simplest choice, Ht = Xijβt,
the fixed-part predicted value of the argument of f in (5), yields the marginal quasi-
likelihood (MQL) algorithm. This can be improved upon by expanding around the

entire current predicted value for the ijth unit, Ht = Xijβt + Z
(1)
ij êij + Z

(2)
ij ûj , where

êij and ûj are the current estimated random effects; when this is combined with an
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improved approximation obtained by replacing the second line in (6) with
[
Z

(1)
ij (eij − êij) + Z

(2)
ij (uj − ûj)

]
f ′(Ht)+

1
2

[
Z

(1)
ij (eij − êij) + Z

(2)
ij (uj − ûj)

]2

f ′′(Ht) ,
(7)

the result is the penalized or predictive quasi-likelihood (PQL) algorithm. The or-
der of an MQL or PQL algorithm refers to how many terms are used in the Taylor
expansion underlying the linearization; for example, (6) is based on expansion up to
second order and leads to MQL2 and PQL2 estimates. Estimated asymptotic standard
errors for MQL/PQL estimates typically derive from a version of observed Fisher in-
formation based on the quasi-likelihood function underlying the estimation process; see
Breslow and Clayton (1993) for details.

2.3 Markov chain Monte Carlo

The Bayesian fitting of both VC and RELR models involves, as usual in the Bayesian
approach, the updating from prior to posterior distributions for the parameters via
appropriate likelihood functions; but in both of these model classes closed-form exact
expressions for most or all of the relevant joint and marginal posterior distributions
are not available (see Chapter 5 of Box and Tiao (1973) for some limited analytical
results in the VC model (1)). Instead we rely here on sampling-based approximations
to the distributions of interest via Markov chain Monte Carlo (MCMC) methods (e.g.,
Gilks et al. (1996)): we use a Gibbs sampling approach in the VC model (cf. Seltzer
(1993)) and an adaptive hybrid Metropolis-Gibbs method for random-effects logistic
regression.

2.3.1 Diffuse priors for multilevel models

As with the Bayesian analysis of all statistical models, broadly speaking two classes of
prior distributions are available for multilevel models: (a) diffuse and (b) informative,
corresponding to situations in which (a) little is known about the quantities of interest
a priori or (b) substantial prior information is available, for instance from previous
studies judged relevant to the current data set. In situation (a), on which we focus
in this paper, it seems natural to seek prior specifications that lead to well-calibrated
inferences (e.g., Dawid (1985)), which we take here to mean point estimates with little
bias and interval estimates whose actual coverage is close to the nominal level (in both
cases in repeated sampling).

There is an extensive literature on the specification of diffuse priors (e.g.,
Bernardo and Smith (1994), Kass and Wasserman (1996), Spiegelhalter et al. (1997),
Gelman et al. (2003)), leading in some models to more than one intuitively reasonable
approach. It is sometimes asserted in this literature that the performance of the resulting
Bayesian estimates is broadly insensitive, with moderate to large sample sizes, to how
the diffuse prior is specified. In preliminary studies we found this to be the case for fixed
effects in both the VC and RELR model classes, and in what follows we use (improper)
priors that are uniform on the real line R for such parameters (these are functionally
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equivalent to proper Gaussian priors with huge variances). As others (e.g., DuMouchel
(1990)) have elsewhere noted, however, we found large differences in performance across
plausible attempts to construct diffuse priors for random-effects variances in both model
classes. Intuitively this is because the effective sample size for the level–2 variance in
a two-level analysis with J level–2 units and N total level–1 units (typically J << N)
is often much closer to J than to N ; in other words, in the language of Example 1,
even with data on hundreds of pupils the likelihood information about the between-
school variance can be fairly weak when the number of schools is modest, so that prior
specification can make a real difference in such cases.

The off-the-shelf (improper) choice for a diffuse prior on a variance in many Bayesian
analyses is p(σ2) ∝ 1

σ2 , which is equivalent to assuming that log
(
σ2

)
is uniform on R.

This is typically justified by noting that the posterior for σ2 will be proper even for very
small sample sizes; but (e.g., DuMouchel and Waternaux (1992)) this choice can lead
to improper posteriors in random-effects models. We avoid this problem by using two
alternative diffuse (but proper) priors, both of which produce proper posteriors:

• A locally uniform prior for σ2 on (0, 1
ε
) for small positive ε (Gelman and Rubin

(1992), Carlin (1992)), which is equivalent to a Pareto(1, ε) prior for the precision
λ = 1

σ2 (Spiegelhalter et al. (1997)); and

• A Γ−1(ε, ε) prior for σ2 (Spiegelhalter et al. (1997)), for small positive ε.

Both of these priors are members of the scaled inverse chi-squared χ−2(ν, s2) family
(e.g., Gelman et al. (2003)); this is equivalent to an inverse gamma Γ−1

(
ν
2 ,

ν
2 s

2
)
distri-

bution, where ν is the prior effective sample size and s2 is a prior estimate of σ2. The
U(0, 1

ε
) and Γ−1(ε, ε) priors above are formally specified by the choices (ν, s2) = (−2, 0)

and (2ε, 1), respectively (in the former case in the limit as ε→ 0). We have found that
results are generally insensitive to the specific choice of ε in the region of 0.001 (the
default setting in Spiegelhalter et al. (1997)); we report findings with this value. (We
also studied the effects of a gently data-determined prior for σ2—χ−2(ε, σ̂2) for small
ε, with REML or PQL estimates used for σ̂2—but found that its results were indis-
tinguishable from those of the Γ−1(ε, ε) prior.) See, e.g., Natarajan and Kass (2000,
2006) and Gelman (2006) for alternatives to the diffuse priors for variance parameters
in hierarchical models which we examine here. Some of these priors (e.g., approximate
uniform shrinkage and default conjugate priors (Natarajan and Kass), or uniform priors
on standard deviations instead of random-effects variances (Gelman)) may have better
repeated-sampling characteristics than the priors we study; our interest here is in re-
porting on the performance of two of the most widely-used approaches to diffuse-prior
specification in current practice in multilevel modeling.

2.3.2 Gibbs sampling in the VC model

The unknown quantities in the VC model can be split into four groups: the fixed
effect β0, the level–2 residuals uj , the level–2 variance σ2

u, and the level–1 variance σ2
e .

Typically the parameters (β0, σ
2
u, σ

2
e) are of principal interest, but Gibbs sampling in
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this model proceeds most smoothly by treating the level–2 residuals as latent variables
and sampling in turn from the full conditional distributions p(β0|y, σ

2
u, σ

2
e , u), p(uj |y, σ

2
u,

σ2
e , β0), p(σ

2
u|y, β0, u, σ

2
e), and p(σ

2
e |y, β0, u, σ

2
u) (here y and u are the N– and J–vectors

of responses and residuals, respectively).

With χ−2(νu, s
2
u) and χ−2(νe, s

2
e) priors for σ2

u and σ2
e , respectively, the full con-

ditionals for model (1) have simple and intuitively reasonable Gaussian and inverse
gamma forms (cf. Seltzer et al. (1996)):

(
β0|y, σ

2
e , u

)
∼ N

[
1
N

∑
ij (yij − uj) ,

σ2
e

N

]
,

(
uj |y, σ

2
u, σ

2
e , β0

)
∼ N

[
D̂j

σ2
e

∑nj
i=1 (yij − β0) , D̂j

]
,

(
σ2
u|u

)
∼ Γ−1

[
J+νu

2 , 1
2

(
νus

2
u +

∑J
j=1 u

2
j

)]
, and

(
σ2
e |y, β0, u

)
∼ Γ−1

[
N+νe

2 , 1
2

(
νes

2
e +

∑
ij e

2
ij

)]
,

(8)

where D̂j =
(
nj
σ2
e
+ 1

σ2
u

)−1

and eij = yij − β0 − uj .

It is possible to improve upon the Monte Carlo efficiency of the simple Gibbs sam-
pler (8) in VC models with re-parameterization (e.g., Roberts and Sahu (1997)), and
Metropolis-Gibbs hybrids based on block updating of the residuals (as in
Browne and Draper (2000) for RELR models) may also lead to Monte Carlo accelera-
tion; we do not pursue these possibilities here. It is worth noting in this context that the
hierarchical centering parameterization introduced by Gelfand et al. (1995) only leads
to better mixing in VC models if σ2

e < σ2
u, which rarely occurs with educational and

medical data.

2.3.3 Adaptive hybrid Metropolis-Gibbs sampling in RELR models

Gibbs sampling in RELR models is not straightforward. For example, in the simple
model

(yij | pij) ∼ Bernoulli(pij), where
logit(pij) = β + uj , uj ∼ N(0, σ2

u),
(9)

and assuming uniform priors for illustration, the full conditional for β is

p(β|y, u) ∝
∏

ij

(
1 + e−β−uj

)−yij (
1 + eβ+uj

)yij−1
. (10)

This distribution does not lend itself readily to direct sampling. Rejection sampling
(Zeger and Karim (1991)) is possible, and the software package WinBUGS
(Spiegelhalter et al. (2003)) employs adaptive rejection sampling (ARS; Gilks and Wild
(1992)). In this paper we use a hybrid Metropolis-Gibbs approach in which (a) Gibbs
sampling is employed for variances and (b) univariate-update random-walk Metropolis
sampling with Gaussian proposal distributions is used for fixed effects and residuals; see
Browne (1998) for details. As with VC models we take uniform priors on R for fixed
effects and χ−2(ν, s2) priors for the variances of random effects. The fixed effects and
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residuals may also be block-updated using multivariate normal proposal distributions;
Browne and Draper (2000) describes comparisons between these two Metropolis alter-
natives and documents the pronounced Monte Carlo efficiency advantage of the hybrid
Metropolis-Gibbs approach over alternatives such as ARS in RELR models, where the
former (with block updating) was 1.7 to 9.0 times faster than the latter in achieving the
same accuracy of posterior summaries in the examples studied.

Metropolis sampling with univariate normal proposals requires specification of the
variances of the proposal distributions. We use scaled versions of the estimated co-
variance matrices of REML or PQL estimates to set the initial values of the proposal
distribution variances, but optimal scaling factors for many multilevel models are not
known (Gelman et al. (1995) contains useful results in simple non-hierarchical settings).
Our preferred method for specifying the proposal distribution variances is adaptive (see,
e.g., Müller (1993) and Gilks et al. (1998) for other approaches to adaptive Metropolis
sampling). From starting values based on the estimated covariance matrices, we first
employ a sampling period of random length (but with an upper bound) during which
the proposal distribution variances are adaptively tuned and eventually fixed for the re-
mainder of the run; this is followed by the usual burn-in period (see Section 2.3.4); and
then the main monitoring run from which posterior summaries are calculated occurs.
The tuning of the proposal distribution variances is based on achieving an acceptance
rate r for each parameter that lies within a specified tolerance interval (r − δ, r + δ).

The algorithm examines empirical acceptance rates in batches of 100 iterations, com-
paring them for each parameter with the tolerance interval and modifying the proposal
distribution appropriately before going on to the next batch of 100. With r∗ as the
acceptance rate in the most recent batch and σp as the proposal distribution SD for a
given parameter, the modification performed at the end of each batch is as follows:

If r∗ ≥ r, σp → σp

[
2−

(
1− r∗

1− r

)]
, else σp →

σp(
2− r∗

r

) . (11)

This modifies the proposal standard deviation by a greater amount the farther the
empirical acceptance rate is from the target r. If r∗ is too low, the proposed moves
are too big, so σp is decreased; if r∗ is too high, the parameter space is being explored
with moves that are too small, and σp is increased. If the r∗ values are within the
tolerance interval during three successive batches of 100 iterations, the parameter is
marked as satisfying its tolerance condition, and once all parameters have been marked
the overall tolerance condition is satisfied and adapting stops. After a parameter has
been marked it is still modified as before until all parameters are marked, but each
parameter only needs to be marked once for the algorithm to end. To limit the time spent
in the adapting procedure an upper limit is set (we typically use 5,000 iterations) and
after this time the adapting period ends regardless of whether the tolerance conditions
are met (in practice this occurs rarely). Values of (r, δ) = (0.5, 0.1) appear to give
near-optimal univariate-update Metropolis performance for a wide variety of multilevel
models (Browne and Draper (2000)).
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Table 3: Summary of study designs for the VC model (1) simulations.

Total
Design number of
(J) Number of pupils per school (nj) pupils (N)

1 (6) 5 10 13 18 24 38 108
2 (6) 18 18 18 18 18 18 108

3 (12) 5 8 10 11 11 12 13 15 20 24 26 61 216
4 (12) 18 18 18 18 18 18 18 18 18 18 18 18 216

5 (24) 5 7 8 10 10 11 11 12 12 13 13 14 432
15 16 18 19 20 21 23 24 26 29 34 61

6 (24) (18 for all schools) 432

7 (48) 5 6 7 8 8 10 10 10 11 11 11 11 864
12 12 12 12 13 13 13 13 14 14 15 15
16 16 17 18 18 19 19 20 20 21 21 21
23 24 24 24 25 26 27 29 34 37 38 61

8 (48) (18 for all schools) 864

2.3.4 Starting values and burn-in strategy

In MCMC sampling with multilevel models it is natural to use as starting values the like-
lihood and quasi-likelihood results from ML/REML in VC models and from MQL/PQL
in REML models. We have found that marginal posteriors in multilevel models of data
sets with all but the tiniest sample sizes, even with diffuse priors, are almost invariably
unimodal (but see Liu and Hodges (2003) for a cautionary note); this encourages a rel-
atively short burn-in period without fear of missing significant posterior mass in all but
the most unusual of situations. We have found burn-ins of 500 iterations to be more
than adequate in both the VC and RELR model classes when likelihood-based starting
values are used.

3 Variance-components models

3.1 Simulation study design

We have conducted a large simulation study of the properties of Bayesian and likelihood-
based estimation methods in the VC model (1). The design of this study was based
on the JSP data set introduced in Section 1.1. The numbers nj of pupils per school in
the subsample of N = 887 students described in that section averaged 18.5, with an SD
of 10.3 and a range from 5 to 61 (i.e., the sampling design across the J = 48 schools
was quite unbalanced). To examine the effects of J and the distribution of the nj in
the simulations, we removed one pupil at random from each of the 23 largest schools
to yield N = 864 students, an average of 18 per school. We then varied the number of
schools included in the study, with schools chosen so that the average number of pupils
per school was maintained at 18 and the sizes of the individual schools were well spread
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out. We considered four sizes of sampling experiment—6, 12, 24 and 48 schools—with
a total of 108, 216, 432 and 864 pupils (respectively), and examined one balanced and
one unbalanced design in each case. The resulting 8 study designs are given in Table 3.
The school-level sample sizes in the cases with unequal nj were chosen to resemble the
actual (highly positively skewed) distribution of class size in the JSP data.

The other factors that varied in our simulations were the true values given to the
parameters of model (1): β0, σ

2
u, and σ2

e . The fixed effect, β0, is typically of lesser
importance in VC models; we fixed it at 30 throughout all runs. The two variances
are more interesting; we chose three possible values for each of these parameters. The
between-schools variance, σ2

u, took the values 1, 10 and 40, and we set the between-
pupils variance σ2

e to 10, 40 and 80. For realism in the educational context of the JSP
data we only examined cases in which σ2

e ≥ σ2
u.

A full-factorial experiment varying both size/balance of the classroom samples and
true parameter values was both computationally prohibitive and unnecessary (prelimi-
nary investigation revealed little or no interaction between these two factors), so we (a)
made one set of runs varying the sample sizes as in Table 3, while holding the param-
eters fixed at values similar to those in the JSP data (β0 = 30, σ2

u = 10, and σ2
e = 40),

and (b) held the sample sizes constant at the values specified by design 7 in Table
3 (the layout most similar to the JSP data), and varied the parameters across seven
settings—(σ2

u, σ
2
e) = (1, 10), (1, 40), (1, 80), (10, 10), (10, 40), (10, 80), (40, 80), giving rise

to intraclass correlation values from 0.012 to 0.5—in all cases with β0 = 30. We created
1,000 simulated data sets in each cell of the experimental grid; see the Appendix for
additional simulation details.

3.2 VC results

3.2.1 Estimator bias

All methods of estimating β0 we examined yielded negligible bias values; for brevity we
omit details. Tables 4 and 5 present Monte Carlo estimates of the relative bias of eight
methods of estimating σ2

u and σ2
e in the VC model (1), and Figures 1 and 2 graphically

summarize some aspects of these tables. Two of the methods studied are likelihood-
based (ML and REML), the other six Bayesian: two priors for the variances (Γ−1(ε, ε)
and U(0, 1

ε
)) crossed with three methods of summarizing the posterior distribution for

the purpose of point estimation (mean, median, mode). In Table 4 σ2
u and σ2

e were
held constant at 10 and 40, respectively, with the results varying across the eight study
designs in Table 3; in Table 5 study design 7 was maintained while (σ2

u, σ
2
e) varied

across seven settings. All methods were close to unbiased for the pupil-level variance
σ2
e , because—even in the smallest study designs—data on 108 or more pupils were

available (in particular all relative bias estimates for σ2
e in the simulations summarized

in Table 5 were less than 1%, and we omit these values for brevity). A number of clear
conclusions emerge from these tables; we describe the results in the language of schools
and pupils, with obvious extension to other settings.

• Bias for all methods drops steadily with increasing N , and tends to be somewhat
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Table 4: Estimates of relative bias for the variance parameters in VC model (1) with a variety

of methods and study designs. The true values of σ2
u and σ2

e were 10 and 40, respectively.

Figures in parentheses are Monte Carlo SEs.

σ2
u Relative

Bias (%)
Number of Level–2 Units J (U = unbalanced, B = balanced)

Estimation
Method

6–U 6–B 12–U 12–B 24–U 24–B 48–U 48–B

ML –22.6 –20.1 –11.9 –9.8 –2.4 –4.1 –2.1 –2.0
(2.1) (2.0) (1.6) (1.4) (1.1) (1.1) (0.9) (0.8)

REML –1.0 0.0 –1.0 0.4 3.1 1.0 0.5 0.5
(2.5) (2.4) (1.7) (1.5) (1.2) (1.2) (0.9) (0.8)

Mean 49.1 51.4 18.4 20.3 12.0 9.7 4.7 4.8
(4.1) (4.0) (2.2) (2.1) (1.3) (1.3) (0.9) (0.9)

Γ−1(ε, ε) Median –6.7 –0.6 –1.9 1.1 3.5 1.7 0.9 1.0
Prior (2.9) (2.8) (1.9) (1.8) (1.2) (1.2) (0.9) (0.8)

Mode –33.6 –31.6 –27.3 –24.1 –12.8 –13.4 –7.7 –7.1
(1.9) (1.9) (1.5) (1.4) (1.1) (1.1) (0.8) (0.8)

Mean 481 450 74.9 70.9 30.8 26.7 12.5 12.0
(10.2) (9.7) (2.7) (2.6) (1.4) (1.4) (1.0) (0.9)

U(0, 1
ε
) Median 140 133 40.6 39.0 20.1 16.9 8.3 8.0

Prior (5.1) (4.9) (2.3) (2.2) (1.5) (1.3) (0.9) (0.9)
Mode 107 94.3 1.2 0.4 0.8 –1.1 –1.0 –0.8

(3.8) (3.6) (1.7) (1.6) (1.2) (1.2) (0.9) (0.8)

σ2
e Relative

Bias (%)
Number of Level–2 Units J (U = unbalanced, B = balanced)

Estimation
Method

6–U 6–B 12–U 12–B 24–U 24–B 48–U 48–B

ML –0.42 –0.45 –0.02 –0.16 –0.31 –0.15 –0.04 –0.09

REML –0.42 –0.41 –0.03 –0.16 –0.31 –0.15 –0.04 –0.09

Mean 2.8 2.8 1.6 1.4 0.3 0.4 0.3 0.2
Γ−1(ε, ε) Median 1.1 1.4 0.9 0.7 –0.0 0.1 0.1 0.1

Mode –1.2 –1.2 –0.4 –0.6 –0.7 –0.6 –0.2 –0.3

Mean 3.5 3.6 2.0 1.9 0.7 0.8 0.4 0.4
U(0, 1

ε
) Median 1.8 2.3 1.4 1.3 0.3 0.5 0.3 0.3

Mode –0.6 –0.5 0.0 –0.1 –0.3 –0.2 –0.1 –0.1

Note: The Monte Carlo SEs for all rows in the σ2
e portion of this table

were 0.5 (designs 1 and 2), 0.3 (designs 3 and 4) and 0.2 (designs 5–8).
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Table 5: Estimates of relative bias for the variance parameter σ2
u in VC model (1) with a variety

of methods and true parameter values. All runs use study design 7. Figures in parentheses

are Monte Carlo SEs. Column headings record the true values of σ2
u, σ

2
e , and the intraclass

correlation ρ.

σ2
u Relative Bias (%) σ2

u;σ
2
e/ρ

Estimation Method
1; 80/
0.012

1; 40/
0.024

1; 10/
0.091

10; 80/
0.111

ML –3.4 –6.5 –3.1 –2.8
(3.0) (2.1) (1.1) (1.0)

REML 7.2 0.3 0.4 0.4
(3.2) (2.1) (1.1) (1.0)

Mean –22.8 –18.5 3.2 3.7
(2.5) (2.1) (1.2) (1.1)

Γ−1(ε, ε) Median –47.9 –31.7 –1.7 –0.8
Prior (2.5) (2.2) (1.2) (1.1)

Mode –60.0 –50.1 –15.1 –12.7
(1.7) (1.7) (1.1) (1.0)

Mean 84.5 39.6 15.9 14.8
(3.1) (2.2) (1.2) (1.1)

U(0, 1
ε
) Median 61.0 27.1 10.5 9.8

Prior (3.1) (2.1) (1.2) (1.1)
Mode 15.7 –4.2 –3.9 –2.9

(2.4) (1.8) (1.1) (1.0)

σ2
u Relative Bias (%) σ2

u;σ
2
e/ρ

Estimation Method
10; 40/
0.200

40; 80/
0.333

10; 10/
0.500

ML –2.1 –1.9 –1.7
(0.9) (0.8) (0.7)

REML 0.5 0.5 0.5
(0.9) (0.8) (0.7)

Mean 4.7 4.9 4.9
(0.9) (0.8) (0.8)

Γ−1(ε, ε) Median 0.9 1.4 1.6
Prior (0.9) (0.8) (0.7)

Mode –7.7 –5.5 –4.5
(0.8) (0.7) (0.7)

Mean 12.5 11.2 10.6
(1.0) (0.9) (0.8)

U(0, 1
ε
) Median 8.3 7.4 6.9

Prior (0.9) (0.8) (0.8)
Mode –1.0 –0.1 0.4

(0.9) (0.8) (0.7)
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Figure 1: Relative bias (a visual analogue of Table 4) in estimating σ2
u as a function of the

number of level–2 units J for each of eight estimation methods (likelihood-based estimates are

plotted with solid lines, Bayesian estimates with Γ−1(ε, ε) priors appear as long dotted lines,

and Bayesian estimates with with U(0, 1
ε
) priors are indicated with short dotted lines). Verti-

cal jumps at constant values of J indicate the effects of balanced versus unbalanced sampling

designs.
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smaller with balanced designs than when substantial imbalance is present. In
Table 5 the magnitude of the bias of estimates of σ2

u generally decreases as the
intraclass correlation ρ increases from near 0 to 0.5.

• ML estimates of σ2
u are biased low with the smallest designs; this is effectively

remedied by the REML bias correction except when ρ is close to 0.

• Posterior means with the Γ−1(ε, ε) prior for the school-level variance σ2
u are sharply

biased high with small sample sizes; this largely disappears when posterior medians
are used with this prior. The exception to this pattern occurs when σ2

e is 40–80
times larger than σ2

u, a situation which gave all of the methods trouble but which
arguably casts doubt on the need for random effects at level 2 in the first place.
Posterior modes with the Γ−1(ε, ε) prior are uniformly biased on the low side,
sometimes substantially.

• The U(0, 1
ε
) prior can produce huge positive biases when attention focuses on the

posterior mean, but has good bias properties with all but the smallest sample sizes
when the mode is used as a point estimate. There is clearly a trade-off between
choice of prior distribution and choice of posterior summary; the need for these
choices gives REML the advantage on bias grounds in small samples.

• The behavior of the two priors is understandable given their shape on the σ2

scale: Γ−1(ε, ε) priors have a sharp spike near 0, which has no effect when the
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Figure 2: Relative bias (a visual analogue of Table 5) in estimating σ2
u as a function of the

intraclass correlation ρ (in an unbalanced design with J = 48 level–2 units and a total of 864

level–1 units) for each of eight estimation methods (likelihood-based estimates are plotted with

solid lines, Bayesian estimates with Γ−1(ε, ε) priors appear as long dotted lines, and Bayesian

estimates with with U(0, 1
ε
) priors are indicated with short dotted lines).
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likelihood is concentrated away from 0 but which can create appreciable negative
bias when the data evidence for positive σ2 is weak. By contrast U(0, 1

ε
) priors

do not have this defect, but claiming in the prior that σ2 is as likely to be 500
(say) as it is to be 10 creates substantial positive bias when the true value is near
10 but sample sizes are small, leading to a relatively diffuse likelihood. Gelman
(2006) makes similar criticisms of the Γ−1(ε, ε) prior and offers useful suggestions
for alternatives.

3.2.2 Interval performance

We also monitored the coverage and length of interval estimates for the parameters in
the VC model (1). To construct Bayesian 100(1 − γ)% intervals we simply used the
100γ

2% and 100
(
1− γ

2

)
% quantiles of the relevant posterior distributions (as estimated

by MCMC). With the likelihood methods we examined six approaches: the first was
intended (as in Examples 1 and 2) to reflect the behavior of many practitioners of
multilevel modeling who are presented in the output of the standard computer programs
with nothing more than an estimate and a standard error; the second through fifth are
simple computationally inexpensive small-sample adjustments to the first for variance
components; and the sixth is an idealized version of likelihood interval estimation for
variances, assuming knowledge of the sampling distribution which would not be available
with a single sample. For brevity we present ML results only for the first method.

• Method 1 used intervals of the form
[
σ̂2 ± Φ−1

(
1− γ

2

)
ŜE

(
σ̂2

)]
based on asymp-

totic normality of the MLE.
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• In the case of variance parameters, method 2 approximates the sampling distri-
bution of the likelihood estimate by a Γ(α, β) distribution (preliminary work sug-
gested that this approximation was reasonable for moderate to large sample sizes).
In this approach we equated the mean α

β
of the gamma distribution to σ̂2 and the

variance α
β2 to V̂

(
σ̂2

)
, obtaining [α̂, β̂] =

[
σ̂4/V̂

(
σ̂2

)
, σ̂2/V̂

(
σ̂2

)]
, and then used

quantiles of the corresponding gamma distribution to generate the interval end-
points. (In the smaller study designs the distribution of the REML estimate is a
mixture of a point mass at 0 and an approximate gamma distribution conditional
on being positive. Any attempt to achieve further improvement in a small-sample
likelihood-based approximation would have to cope with the spike at 0.)

• Methods 3 and 4 use Taylor series and transformations to normality. Suppose that
the sampling distribution of g

(
σ̂2

)
is approximately Gaussian for some invertible

function g, and σ̂2 is approximately unbiased. Then by the ∆–method g
(
σ̂2

)

has approximate mean g
(
σ2

)
and variance

[
g′
(
σ2

)]2
V
(
σ̂2

)
, and an approximate

100(1− γ)% confidence interval for σ2 is therefore of the form

g−1
[
g
(
σ̂2

)
± Φ−1

(
1−

γ

2

) ∣∣g′
(
σ̂2

)∣∣ ŜE
(
σ̂2

)]
. (12)

Method 3 takes the sampling distribution of g
(
σ̂2

)
to be approximately lognormal

and uses g(·) = ln(·), and method 4 employs the Wilson and Hilferty (1931) opti-

mal transformation to normality for gamma random variables, g(·) = (·)
1
3 . Both

of these methods fail when σ̂2 = 0 because of division by zero in the derivative
calculation in (12).

• Method 5, which uses a variance-stabilizing (VS) transformation, is based on
the observation by Longford (2000) that (a) the ML estimate of the variance

ratio τ =
σ2
u

σ2
e
is highly correlated with its estimated asymptotic standard error

ŜE (τ̂), and (b) this dependence is removed asymptotically by working instead
with η = ln

(
n̄−1 + τ

)
, where n̄ is a suitably chosen mean of the numbers nj of

level–1 units per level–2 unit (we found that harmonic means work best). This
suggests building a Gaussian interval estimate on the η scale, relying on the large-
sample result V (η̂ML) =

2
J
, and back-transforming to obtain an interval for τ . We

then convert this into an interval for σ2
u by using the REML estimate of σ2

e in
place of σ2

e , which should yield good performance in our context because the total
number N of level–1 units in our simulations never drops below 108. The resulting
intervals for σ2

u have the form

σ̂2
e

{
exp

[
ln

(
n̄−1 +

σ̂2
u

σ̂2
e

)
± Φ−1

(
1−

γ

2

)√ 2

J

]
− n̄−1

}
. (13)

These intervals may have a negative left endpoint when σ2
u is small in relation to

σ2
e ; in many uses of model (1) this is undesirable, but (as Longford points out)

reformulations of the model exist in which negative values of τ are sensible subject
to a positive-definite constraint on the implied covariance matrix of y.
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Figure 3: Actual coverage of nominal 95% intervals (a visual analogue of Table 6) for σ2
u as a

function of the number of level–2 units J for each of eight estimation methods (ML intervals

are plotted with long dotted lines, Bayesian intervals with Γ−1(ε, ε) priors appear as solid lines,

and a variety of REML-based intervals are indicated with short dotted lines). Vertical jumps

at constant values of J indicate the effects of balanced versus unbalanced sampling designs.
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• To estimate “best possible” (idealized) performance of the likelihood intervals for
variances (method 6), we reasoned as follows. As in method 2, the sampling
distribution for a likelihood estimate such as σ̂2

u should be approximately gamma,

with parameters (α̂, β̂) which depend on the study design and underlying model

parameters, and if these (α̂, β̂) values were known an interval estimate for σ2
u could

be formed by analogy with the usual result with an IID Gaussian sample of size n:
(n−1)σ̂2

σ2 ∼ χ2
n−1, i.e., σ̂

2 ∼ Γ
(
n−1

2 , n−1
2σ2

)
. In each of the cells of our simulation grid

we therefore used maximum likelihood (e.g., Johnson et al. (1994)) to estimate

(α̂, β̂) from the 1,000 simulation replications, set n̂ = 2α̂ + 1, and constructed
1,000 idealized interval estimates of the form

[
(n̂− 1)

χ2
n̂−1,1− γ

2

σ̂2,
(n̂− 1)

χ2
n̂−1, γ

2

σ̂2

]
, (14)

where χ2
k,γ is the γ quantile of the χ2

k distribution. This method also fails when

σ̂2 = 0 because the MLEs of the parameters of a gamma distribution are undefined
if any of the data values are zero.

Tables 6–9 present the actual coverage and mean length of nominal 95% interval
estimates for σ2

u, and Figures 3 and 4 graphically summarize the interval-coverage in-
formation in these tables. The following conclusions are evident from the tables and
figures, and from other simulation results not presented here (for more details see Browne
(1998), which is available on the web at www.ams.ucsc.edu/∼draper).
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Table 6: Performance of interval estimates of σ2
u in VC model (1) with a variety of methods

and study designs: actual coverages of nominal 95% intervals. The true values of σ2
u and σ2

e

were 10 and 40, respectively. Values in square brackets report the percentage of time REML

yielded variance estimates of zero, and values in curly brackets record the percentage of time

the VS intervals had a negative left endpoint (LE).

σ2
u Coverage (%)

Number of Level–2 Units J
(U = unbalanced, B = balanced)

Estimation Method 6 (U) 6 (B) 12 (U) 12 (B)

ML Gaussian 71.9 73.3 80.9 83.0

Gaussian 78.5 80.4 86.2 87.1
Gamma 84.1 85.9 90.0 91.0

REML Lognormal∗ 99.1 98.7 98.4 98.2
Cube Root∗ 99.3 98.3 93.1 94.5

VS 90.7 89.1 92.9 93.3
Idealized∗ 94.5 93.6 95.5 95.7

REML % zero σ̂2
u [4.8%] [3.6%] [0.4%] [0%]

VS % LE < 0 {43%} {27%} {12%} {3.9%}

Γ−1(ε, ε) Prior 88.9 88.5 92.2 93.7

Uniform(0, 1
ε
) Prior 91.5 90.7 94.2 93.0

σ2
u Coverage (%)

Number of Level–2 Units J
(U = unbalanced, B = balanced)

Estimation Method 24 (U) 24 (B) 48 (U) 48 (B)

ML Gaussian 89.5 88.5 91.4 90.7

Gaussian 91.2 90.2 92.4 91.1
Gamma 93.1 92.3 93.8 92.4

REML Lognormal∗ 95.0 94.8 94.5 93.9
Cube Root∗ 93.9 93.5 94.0 93.5

VS 90.7 93.4 94.8 93.1
Idealized∗ 93.7 94.5 94.7 94.8

REML % zero σ̂2
u [0%] [0%] [0%] [0%]

VS % LE < 0 {0.2%} {0.1%} {0%} {0%}

Γ−1(ε, ε) Prior 94.0 93.9 93.8 93.4

Uniform(0, 1
ε
) Prior 93.8 93.5 93.0 93.2

Notes: Monte Carlo SEs for coverage rates ranged from 0.3% (for estimates near 99%) to 1.4% (for
estimates near 70%). ∗In the lognormal, cube-root, and idealized cases, interval coverages were based

only on the replications in which the estimates were nonzero.
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Table 7: Performance of interval estimates of σ2
u in VC model (1) with a variety of methods

and study designs: mean interval lengths. The true values of σ2
u and σ2

e were 10 and 40,

respectively. Figures in parentheses are Monte Carlo SEs.

σ2
u Interval Length

Number of Level–2 Units J
U = unbalanced, B = balanced)

Estimation Method 6 (U) 6 (B) 12 (U) 12 (B)

ML Gaussian 23.2 (0.5) 22.9 (0.5) 18.6 (0.3) 18.0 (0.2)

Gaussian 28.3 (0.6) 27.4 (0.6) 20.4 (0.3) 19.5 (0.3)
Gamma 27.0 (0.6) 26.3 (0.5) 19.9 (0.3) 19.1 (0.3)

REML Lognormal∗ — — — —
Cube Root∗ 36.9 (3.8) 32.9 (1.2) 21.5 (0.3) 20.5 (0.3)

VS 36.7 (0.7) 33.9 (0.7) 23.4 (0.3) 21.8 (0.3)
Idealized∗ 131 (3.2) 112 (2.6) 43.6 (0.7) 39.7 (0.7)

Γ−1(ε, ε) Prior 59.5 (1.4) 58.1 (1.3) 29.5 (0.4) 28.4 (0.4)

Uniform(0, 1
ε
) Prior 299 (5.0) 273 (4.7) 46.7 (0.6) 44.0 (0.6)

σ2
u Interval Length

Number of Level–2 Units J
(U = unbalanced, B = balanced)

Estimation Method 24 (U) 24 (B) 48 (U) 48 (B)

ML Gaussian 14.1 (0.1) 13.4 (0.1) 9.9 (0.1) 9.6 (0.1)

Gaussian 14.7 (0.1) 13.9 (0.1) 10.2 (0.1) 9.8 (0.1)
Gamma 14.5 (0.1) 13.8 (0.1) 10.1 (0.1) 9.8 (0.1)

REML Lognormal∗ 16.0 (0.1) 15.1 (0.1) 10.6 (0.1) 10.2 (0.1)
Cube Root∗ 15.0 (0.1) 14.2 (0.1) 10.2 (0.1) 9.9 (0.1)

VS 15.8 (0.1) 14.7 (0.1) 10.6 (0.1) 10.1 (0.1)
Idealized∗ 19.7 (0.2) 19.4 (0.2) 12.4 (0.1) 11.8 (0.1)

Γ−1(ε, ε) Prior 17.5 (0.2) 16.6 (0.2) 11.0 (0.1) 10.6 (0.1)

Uniform(0, 1
ε
) Prior 21.0 (0.2) 19.7 (0.2) 11.8 (0.1) 11.5 (0.1)

Notes: The dashes in the lognormal entries replace enormous numbers arising from division by
near-zero values. ∗In the lognormal, cube-root, and idealized cases, interval lengths were based only

on the replications in which the estimates were nonzero (see Table 6).
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Table 8: Performance of interval estimates of σ2
u in VC model (1) with a variety of methods

and true parameter values: actual coverages of nominal 95% intervals. All runs use study

design 7. Column headings record the true values of σ2
u, σ

2
e , and the intraclass correlation ρ.

Values in square brackets report the percentage of time REML yielded variance estimates of

zero and values in curly brackets record the percentage of time the VS intervals had a negative

left endpoint (LE).

σ2
u Coverage (%) σ2

u;σ
2
e/ρ

Estimation Method
1; 80/
0.012

1; 40/
0.024

1; 10/
0.091

10; 80/
0.111

ML Gaussian 78.5 88.0 90.7 90.1

Gaussian 80.4 89.4 91.8 91.7
Gamma 75.7 88.7 93.7 93.5

REML Lognormal∗ 92.1 94.6 95.5 95.0
Cube Root∗ 95.4 96.9 94.1 94.3

VS 99.2 98.9 94.5 94.6
Idealized∗ 90.7 94.6 94.6 94.9

REML % 0 Estimate [19%] [7.0%] [0.1%] [0%]

VS % LE < 0 {92%} {74%} {1.2%} {0.2%}

Γ−1(ε, ε) Prior 89.5 88.6 92.6 93.5

Uniform(0, 1
ε
) Prior 95.9 95.5 93.0 93.1

σ2
u Coverage (%) σ2

u;σ
2
e/ρ

Estimation Method
10; 40/
0.200

40; 80/
0.333

10; 10/
0.500

ML Gaussian 91.4 92.1 91.4

Gaussian 92.4 92.9 92.7
Gamma 93.8 93.2 93.9

REML Lognormal∗ 94.5 94.3 94.6
Cube Root∗ 94.0 94.3 94.1

VS 94.8 94.4 94.5
Idealized∗ 94.7 95.5 95.8

REML % 0 Estimate [0%] [0%] [0%]

VS % LE < 0 {0%} {0%} {0%}

Γ−1(ε, ε) Prior 93.8 93.8 94.3

Uniform(0, 1
ε
) Prior 93.0 92.9 92.8

Notes: See Table 6.
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Figure 4: Actual coverage of nominal 95% intervals (a visual analogue of Table 8) for σ2
u as a

function of the intraclass correlation ρ (in an unbalanced design with J = 48 level–2 units and

a total of 864 level–1 units) for each of eight estimation methods (ML intervals are plotted with

long dotted lines, Bayesian intervals with Γ−1(ε, ε) priors appear as solid lines, and a variety

of REML-based intervals are indicated with short dotted lines).
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• Intervals for σ2
e (not shown) had close to nominal coverage with all methods,

and will not be discussed further. The coverage of ML/REML intervals for the
fixed effect β0 (also not shown) was below nominal with 6–12 schools and 108–216
pupils (study designs 1–4) but approached nominal levels with larger sample sizes.
Bayesian interval coverage for β0 with both Γ−1(ε, ε) and U(0, 1

ε
) priors for the

variance components was close to nominal in all designs examined (β0 and σ2
u are

correlated in the posterior, so the prior for σ2
u affects inferences about β0).

• The effects of imbalance in the design were small but nonzero, and intuitively
reasonable: holding the total number of pupils constant, balance yielded narrower
intervals and generally better coverage.

• As was the case with bias in the estimation of σ2
u (Table 5), interval performance

generally improved as the intraclass correlation ρ increased away from 0 (Table 8).
Even with data on 48 schools and 864 pupils, both likelihood-based and Bayesian
methods can have difficulty apportioning variation within and between schools
when σ2

e is much larger than σ2
u.

• ML produced Gaussian intervals for σ2
u that were consistently too narrow to

achieve good coverage. REML improved on this but still fell below nominal cov-
erage in all situations examined, using both the Gaussian and gamma intervals.
In the two smallest designs the lognormal and cube root REML intervals failed to
exist 4–5% of the time, and over-covered when they did not fail (and the lognormal
intervals continued to over-cover in designs 3 and 4), but with 24 or more level–
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Table 9: Performance of interval estimates of σ2
u in VC model (1) with a variety of methods

and true parameter values: mean interval lengths. All runs use study design 7; column headings

record σ2
u and σ2

e . Figures in parentheses are Monte Carlo SEs.

σ2
u Interval Length σ2

u;σ
2
e

Estimation Method 1; 10 1; 40 1; 80 10; 10 10; 40 10; 80 40; 80

ML Gaussian 1.27 2.39 3.49 8.41 9.93 11.8 35.7
(0.01) (0.03) (0.1) (0.1) (0.1) (0.1) (0.2)

Gaussian 1.30 2.47 3.66 8.59 10.2 12.1 36.5
(0.01) (0.03) (0.1) (0.1) (0.1) (0.1) (0.2)

Gamma 1.29 2.34 3.31 8.56 10.1 12.0 36.2
(0.01) (0.03) (0.1) (0.1) (0.1) (0.1) (0.2)

REML Lognormal∗ 1.40 — — 8.86 10.6 12.8 37.8
(0.01) — — (0.1) (0.1) (0.1) (0.3)

Cube Root∗ 1.32 40.3 14.1 8.65 10.2 12.2 36.8
(0.01) (25.5) (4.0) (0.1) (0.1) (0.1) (0.2)

VS 1.41 3.15 5.53 8.83 10.6 12.9 37.7
(0.01) (0.02) (0.03) (0.06) (0.1) (0.1) (0.3)

Idealized∗ 1.81 7.46 13.6 10.0 12.4 16.0 42.9
(0.02) (0.15) (0.3) (0.1) (0.1) (0.2) (0.3)

Γ−1(ε, ε) Prior 1.40 2.28 2.95 9.34 11.0 13.0 39.6
(0.01) (0.03) (0.1) (0.1) (0.1) (0.1) (0.3)

Uniform(0, 1
ε
) Prior 1.53 2.99 4.71 9.97 11.8 14.2 42.5

(0.01) (0.03) (0.05) (0.1) (0.1) (0.1) (0.3)

Notes: See Table 7.

2 units (schools) both transformation-based methods improved on the Gaussian
and gamma intervals and achieved coverages close to nominal. The lognormal
and cube root REML intervals failed to exist 7–19% of the time when ρ ≤ 0.024,
but—as mentioned earlier—in such situations the need for VC modeling is unclear.
The VS intervals sharply over-covered when ρ was small and had a negative left
endpoint 4–43% of the time in the smallest designs, but performed well otherwise.

• Bayesian intervals for σ2
u with the U(0, 1

ε
) prior had actual coverages at or close

to nominal levels in all study designs and parameter settings examined. The
Γ−1(ε, ε) intervals undercovered to some extent (actual levels near 90% at nominal
95%) when the number of level–2 units or the variance ratio τ were small, but
performed well in all other situations. Note, however, that the U(0, 1

ε
) intervals

were extremely wide with small samples (Table 7); further work is needed to see
if other prior specifications might yield narrower but still well-calibrated intervals
in such situations.

• In some cases the REML asymptotic standard errors underestimated the actual
sampling variabilities they were meant to estimate. This may be seen from the
substantially improved performance of the idealized intervals over the REML
gamma intervals in small samples, and is also clear from a comparison of the
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mean value of the REML squared standard errors for σ̂2
u with the sample variance

of the 1,000 simulated σ̂2
u values: across studies 1–8 in Table 6, ratios of the form{

mean
[
ŜE

2(
σ̂2

)]
/ V̂

(
σ̂2

)}
came out (0.854, 0.837, 0.920, 0.910, 1.02, 0.933, 0.899,

0.925), respectively, i.e., the REML squared SEs underestimated the sampling vari-
ances on average by 15–16% in studies 1–2 (see Longford (2000) for a theoretical
explanation of this phenomenon).

4 Random-effects logistic regression models

4.1 Simulation study design

We have also conducted a large simulation study of the properties of quasi-likelihood
and Bayesian estimation methods in the RELR model (2). The design of this study
was based on the Rodŕıguez-Goldman data set introduced in Section 1.2. Conditioning
on both the covariates (x1ijk, x2jk, x3k) and the true parameter values (β0 = 0.65, β1 =
β2 = β3 = σ2

u = σ2
v = 1.0) used by Rodŕıguez and Goldman (1995) in their likelihood-

based simulation study, we used model (2) to create 500 simulation replications of the
Rodŕıguez-Goldman data structure, each with 161 communities, 1,558 mothers, and
2,449 births.

For each simulated data set we estimated the six parameters using two quasi-
likelihood methods—MQL1 and PQL2—and Bayesian fitting with two priors. In the
quasi-likelihood estimation we used a convergence tolerance (maximum relative change
in parameter values from one iteration to the next) of 0.01. For Bayesian estimation we
used MCMC with (improper) uniform priors on R on the βl and two prior distributions
on the variance components: Γ−1(ε, ε) and (improper) uniform on (0,∞), functionally
equivalent to a proper U(0, 1

ε
) prior for small ε. We used the adaptive hybrid Metropolis-

Gibbs method described in Section 2.3.3, with a maximum adaptation period of 5,000
iterations, a target acceptance rate of 44%, a burn-in from PQL2 starting values of
500 iterations, and a monitoring run of 25,000 iterations (based on Raftery and Lewis
(1992) default accuracy recommendations).

4.2 RELR results

Tables 10–11 and Figures 5 and 6 present our simulation findings. For each of the six
parameters the tables contrast the mean estimate, and coverage and length of nominal
95% intervals, for the various estimation methods, using posterior means as Bayesian
point estimates (medians and modes gave essentially the same results); the table also
summarizes large-sample Gaussian intervals—and gamma, lognormal, and idealized in-
tervals as in Section 3.2.2 for the variance parameters—based on the quasi-likelihood
methods (the cube root results were inferior to those from the lognormal approxima-
tion, and the VS method is not readily adaptable to this setting since there is no direct
estimate of the level–1 variance). Figures 5 and 6 give calibration plots for the six
parameters (three in each figure), in which nominal and actual coverage of 100(1− γ)%
intervals for γ = 0.01, 0.02, . . . , 0.99 are contrasted for the various estimation meth-
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Table 10: Mean estimates (top table) and coverage (bottom table) of nominal 95% intervals, for

four estimation methods in RELR model (2) with the Rodŕıguez-Goldman data structure. True

values of the parameters are given in square brackets in the top table. 95% central posterior

Bayesian intervals are reported, and figures in parentheses are Monte Carlo SEs.

Mean Estimate Parameter

Estimation Method
β0

[0.65]
β1

[1.0]
β2

[1.0]
β3

[1.0]
σ2
v

[1.0]
σ2
u

[1.0]

MQL1 0.474 0.741 0.753 0.727 0.550 0.026
(0.007) (0.007) (0.004) (0.009) (0.004) (0.002)

PQL2 0.612 0.945 0.958 0.942 0.888 0.568
(0.009) (0.009) (0.005) (0.011) (0.009) (0.010)

Γ−1(ε, ε) 0.638 0.991 1.006 0.982 1.023 0.964
Bayesian Priors (0.010) (0.010) (0.006) (0.012) (0.011) (0.018)

U(0,∞) 0.655 1.015 1.031 1.007 1.108 1.130
Priors (0.010) (0.010) (0.005) (0.013) (0.011) (0.016)

Actual Coverage (%) Parameter

Estimation Method β0 β1 β2 β3 σ2
v σ2

u

MQL1 Gaussian 76.8 68.6 17.6 69.6 2.4 0.0
(1.9) (2.1) (1.7) (2.1) (0.7) (—)

Gaussian 92.0 96.2 90.8 89.8 77.6 26.8
(1.2) (0.9) (1.3) (1.4) (1.9) (2.0)

Gamma — — — — 81.0 31.4
PQL2 — — — — (1.8) (2.1)

Lognormal — — — — 84.2 37.4
— — — — (1.6) (2.1)

Idealized — — — — 93.6 83.4
— — — — (1.1) (1.7)

Γ−1(ε, ε) 93.2 96.4 92.6 92.2 94.4 88.6
Bayesian Priors (1.1) (0.8) (1.2) (1.2) (1.0) (1.4)

U(0,∞) 93.6 96.4 92.8 93.6 92.2 93.0
Priors (1.1) (0.8) (1.2) (1.1) (1.2) (1.1)
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Table 11: Mean length of nominal 95% intervals, for four estimation methods in RELR model

(2) with the Rodŕıguez-Goldman data structure. True values of the parameters are given in

square brackets. 95% central posterior Bayesian intervals are reported, and figures in paren-

theses are Monte Carlo SEs.

Mean Interval Length Parameter

Estimation Method
β0

[0.65]
β1

[1.0]
β2

[1.0]
β3

[1.0]
σ2
v

[1.0]
σ2
u

[1.0]

MQL1 Gaussian 0.589 0.681 0.327 0.746 0.404 0.177
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Gaussian 0.735 0.796 0.400 0.930 0.638 0.591
(0.003) (0.002) (0.001) (0.003) (0.005) (0.002)

Gamma — — — — 0.636 0.586
PQL2 — — — — (0.005) (0.003)

Lognormal — — — — 0.641 0.635
— — — — (0.005) (0.004)

Idealized — — — — 0.851 1.25
— — — — (0.009) (0.022)

Γ−1(ε, ε) 0.798 0.875 0.463 1.01 0.878 1.25
Bayesian Priors (0.004) (0.003) (0.002) (0.004) (0.009) (0.015)

U(0,∞) 0.828 0.895 0.476 1.05 0.948 1.32
Priors (0.003) (0.002) (0.002) (0.004) (0.008) (0.011)

ods, using Gaussian intervals for MQL1 and PQL2 for the fixed effects and adding the
PQL2 lognormal intervals for the variance parameters. The following conclusions may
be drawn from these summaries.

• MQL1 yielded sharply biased estimates and very poor coverage properties, es-
pecially for the random-effects variances (e.g., the MQL1 point estimate of the
level–2 variance σ2

u was 0 in 58% of the simulated data sets). PQL2 produced a
considerable improvement, but bias and undercoverage with the Gaussian inter-
vals were still noticeable, especially for σ2

u. The lognormal intervals offered some
improvement but still exhibited substantial undercoverage.

• PQL2 underperformed for the variance estimates both because the PQL estimates
are biased low and because the PQL standard errors are too small (see Engel (1998)
and Lee and Nelder (2001) for theoretical results that support this conclusion).
As was the case with the VC model, this may be seen in two ways: (a) by the
improved performance of the idealized interval estimates and (b) through the

ratios
{
mean

[
ŜE

2(
σ̂2

)]
/ V̂

(
σ̂2

)}
, which were 0.447 and 0.672 for σ2

u and σ2
v ,

respectively, i.e., the typical estimated variance of σ̂2
u in any given simulated data

set was only about 45% of the actual sampling variance across the 500 data sets.
This seems to be largely a small-sample problem for PQL—even though each
simulated data set had 2,449 births, the average number of women per community
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(the most important determinant of the accuracy of σ̂2
u) was only 1,558

161

.
= 9.7—

but note that even with 161 communities the PQL performance for σ2
v was also

unsatisfactory.

• Bayesian estimates with both priors were close to unbiased and well calibrated for
all parameters, with actual coverage values close to nominal at all levels in Figures
1 and 2.

5 Summary and conclusions

In two large simulations studies whose design is realistic for educational and medi-
cal research (as well as other fields of inquiry), we have examined the performance
of likelihood-based and Bayesian methods of fitting variance-components (VC) and
random-effects logistic regression (RELR) models, focusing on the likelihood-based ap-
proaches in most frequent current use in the applied multilevel-modeling literature. Our
main findings are as follows.

• In two-level VC models with a wide variety of sample sizes and true parameter
values,

– Both likelihood-based (ML and REML) and Bayesian (diffuse-prior) methods
can be made to yield approximately unbiased point estimates, in the likeli-
hood case by using REML rather than ML estimates, and in the Bayesian
case by choosing one of several combinations of diffuse priors and posterior
point summaries (specifically, for random-effects variances: posterior medi-
ans for Γ−1(ε, ε) priors and posterior modes for U(0, 1

ε
) priors, in both cases

for small ε; these combinations produce approximate unbiasedness in all but
the smallest designs (i.e., those with fewer than about a dozen cluster units in
the hierarchy)). The automatic nature of REML’s bias correction represents
an advantage for the likelihood-based approach as far as bias is concerned
with small samples (see Section 3.2.1, Tables 4 and 5, and Figures 1 and 2
for details);

– However, both approaches experienced difficulty in attaining nominal cover-
age of interval estimates in two situations: when (i) the number J of level–2

(cluster) units and/or (ii) the variance ratio τ =
σ2
u

σ2
e
between levels 2 and

1 (or equivalently the intraclass correlation ρ = τ
τ+1 ) are small (see Section

3.2.2, Tables 6–9, and Figures 3 and 4 for details on the magnitude of these
effects).

• In the three-level RELR model we studied (which had 161 units at level 3, an
average of 9.7 level–2 units per level–3 unit, and a total of 2,449 level–1 units),

– quasi-likelihood methods performed badly in terms of bias of point estimates
and coverage of interval estimates for random-effects variances (see Section
4.2 and Tables 10 and 11 for details); and
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Figure 5: Actual versus nominal coverage of four estimation methods for the parameters β0, β1

and β2 in the RELR model (2).
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Figure 6: Actual versus nominal coverage of four estimation methods for the parameters β3, σ
2
v

and σ2
u in the RELR model (2).
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– Bayesian methods with diffuse priors were well-calibrated in both point and
interval estimation for all parameters of the model (see Figures 5 and 6 for
a dramatic summary of the calibration picture in RELR models).

Our RELR results, narrowly construed, apply only to the 3–level model (2) with sam-
ple sizes like those in Example 2 of Section 1.2, but our quasi-likelihood conclusions are
consistent with broad theoretical predictions made by Engel (1998) and Lee and Nelder
(2001), and our Bayesian calibration findings are in line with those in other multilevel
settings we have examined (e.g., Browne and Draper (2000), Browne et al. (2002)).

These results bear comment both methodologically and in their practical implica-
tions for applied multilevel modeling in health care, education, and other fields. On the
methodological side,

• Further study is needed to see if alternative diffuse priors (e.g., Daniels (1999),
Natarajan and Kass (2000, 2006), Gelman (2006)) can remedy the undercoverage
of Bayesian intervals (and achieve approximate unbiasedness without the need to
select a method of posterior summary depending on the problem) with small num-
bers of level–2 units in 2–level VC models; we intend to report on this elsewhere.
Likelihood-based intervals of the kind we have studied here underperform in that
situation for a fundamental reason that would be harder to remedy: the insistence
on maximization (rather than integration) over the parameters of a highly-skewed
likelihood surface with its marginal maximum at σ2

u = 0 leads to zero point es-
timates in small samples with some frequency when the true value is well away
from 0;

• The usual quasi-likelihood computer output in RELR models may not be trust-
worthy either for point estimation or uncertainty assessment, in the latter case
because the estimated asymptotic standard errors can be systematically too small
when the mean numbers of level–k units per level–(k+1) unit (and/or the number
of level–M units in an M–level model) are small for k ≥ 1; and

• There is an expectation, expressed formally in the Bernstein-von Mises theo-
rem (e.g., Freedman (1999); also see Samaniego and Reneau (1994) and Severini
(1994)), that likelihood and diffuse-prior Bayesian results will be close in large sam-
ples, and this will typically occur when parametric models with a modest number
of parameters are fit to data not possessing a hierarchical structure. However,

– what looks like a large sample in multilevel modeling may not be so large in
reality, because the effective sample sizes for variances of random effects at
levels greater than 1 in the hierarchy are mainly governed not by the total
number of level–1 units (which will often be large) but by the numbers of
units at the other levels, which are often much smaller; and

– exact-likelihood methods for non-Gaussian multilevel models have until fairly
recently been difficult to implement (because evaluation of the likelihood
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function involves integrating over the random effects), with the result that ap-
proximate methods such as quasi-likelihood techniques in RELR models have
gained widespread use, and the Bernstein-von Mises theorem says nothing
about agreement between Bayesian and approximate likelihood approaches
unless the approximation is good.

On the practical side, as mentioned in Section 1.3, likelihood methods that may prove
superior to quasi-likelihood have recently been under development, based on (a) Gaus-
sian quadrature (e.g., Pinheiro and Bates (1995); see the SAS (SAS-Institute (2006))
procedure MIXED for VC model fitting and the packages EGRET, MIXOR, and LIMDEP,
the SAS procedure NLMIXED, and the SAS macro NLINMIX for examples of quadrature
implementations in RELR models; note however that, since these programs are only
applicable to 2–level designs, they could not be used on the RELR models in this
paper), (b) nonparametric maximum likelihood (Aitkin (1999a), supported by GLIM4

macros written by the author), (c) Laplace approximations (Raudenbush et al. (2000),
available in HLM), (d) hierarchical generalized linear models (Lee and Nelder (2001), as
implemented in GENSTAT macros), and (e) profile likelihood (e.g., Longford (2000));
parametric bootstrapping of PQL estimates (e.g., Rodŕıguez and Goldman (2001), for
instance using MLwiN) may well lead to significant improvement in RELR models as
well. We are not aware of large-scale simulation results on the calibration of these
approaches in small samples; the literature seems particularly silent on the quality of
interval estimates produced by these methods.

One important likelihood-Bayesian comparison we have not addressed is computa-
tional speed, where ML/REML and MQL/PQL approaches have a distinct advantage
(for example, PQL2 fitting of model (2) to the Rodŕıguez-Goldman data set in Table 2
takes less than 3 seconds on a 3GHz PC versus 1.8 minutes using MCMC with 25,000
monitoring iterations). However, (i) steady improvements in recent years in both hard-
ware speed and efficiency of Monte Carlo algorithms and (ii) the lack of calibration
of likelihood-based methods in some common hierarchical settings combine to make
MCMC-based Bayesian fitting of multilevel models an attractive approach, even with
rather large data sets. Other analytic strategies based on less approximate likelihood
methods are also possible but would benefit from further study of the type summarized
here.
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Appendix: Computing details

In the VC simulations, to decide how long to monitor the Gibbs-sampling output we estimated
time per iteration and calculated Raftery and Lewis (1992) diagnostics as a function of the
total number of pupils N . This revealed that the smaller designs in Table 3 needed longer
monitoring runs to satisfy Raftery-Lewis default accuracy constraints but took less time per
iteration, leading to the following monitoring run lengths M : 50,000 in studies 1 and 2, 30,000
in 3 and 4, 20,000 in 5 and 6, and 10,000 in studies 7 and 8. The full set of VC simulations
took 1.8 GHz-months of CPU time on 3 Sun SPARCstations and a Pentium-based PC.

The data sets in Examples 1 and 2, and WinBUGS and MLwiN programs to fit models (1) and
(2) to those examples, are available on the web at www.ams.ucsc.edu/∼draper.
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