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Due date at canvas.ucsc.edu: by 11.59pm on Sun 10 Mar 2019

Here are the ground rules: this test is open-book and open-notes, and consists of two problems
(true/false and calculation); each of the 6 true/false questions is worth 10 points, and the
calculation problem is worth 280 total points (with possible additional extra credit of up
to 25 points), for a total of 340 points.

The right answer with no reasoning to support it, or incorrect reasoning, will get half credit, so try to
make a serious effort on each part of each problem (this will ensure you at least half credit). In an AMS
graduate class I taught in 2012, on a take-home test like this one there were 15 true/false questions,
worth a total of 150 points; one student got a score of 92 out of 150 (61%, a D−, in a graduate class
where B− is the lowest passing grade) on that part of the test, for repeatedly answering just “true” or
“false” with no explanation. Don’t let that happen to you.

On non-extra-credit problems, I mentally start everybody out at −0 (i.e., with a perfect score), and
then you accumulate negative points for incorrect answers and/or reasoning, or parts of problems left
blank. On extra-credit problems, the usual outcome is that you go forward (in the sense that your
overall score goes up) or you at least stay level, but please note that it’s also possible to go backwards
on such problems (e.g., if you accumulate +3 for part of an extra-credit problem but −4 for the rest of
it, for saying or doing something egregiously wrong).

This test is to be entirely your own efforts; do not collaborate with anyone or get help from anyone
but me or our TA (René Gutierrez). The intent is that the course lecture notes and readings should
be sufficient to provide you with all the guidance you need to solve the problems posed below, but you
may use other written materials (e.g., the web, journal articles, and books other than those already
mentioned in the readings), provided that you cite your sources thoroughly and accurately;
you will lose (substantial) credit for, e.g., lifting blocks of text directly from wikipedia and inserting
them into your solutions without full attribution.

If it’s clear that (for example) two people have worked together on a part of a problem that’s worth
20 points, and each answer would have earned 16 points if it had not arisen from a collaboration, then
each person will receive 8 of the 16 points collectively earned (for a total score of 8 out of 20), and I
reserve the right to impose additional penalties at my discretion. If you solve a problem on your own
and then share your solution with anyone else (because people from your cultural background routinely
do this, or out of pity, or kindness, or whatever motive you may believe you have; it doesn’t matter),
you’re just as guilty of illegal collaboration as the person who took your solution from you, and both
of you will receive the same penalty. This sort of thing is necessary on behalf of the many people who
do not cheat, to ensure that their scores are meaningfully earned. In the AMS graduate class in 2012
mentioned above, five people failed the class because of illegal collaboration; don’t let that happen to
you.
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In class I’ve demonstrated numerical work in R; you can (of course) make the calculations and plots
requested in the problems below in any environment you prefer (e.g., Matlab, Python, ...).

Please collect {all of the code you used in answering the questions below} into an Appendix
at the end of your document, so that (if you do something wrong) the grader can better
give you part credit. To avoid plagiarism, if you end up using any of the code I post on the course
web page or generate during office hours, at the beginning of your Appendix you can say something
like the following:

I used some of Professor Draper’s R code in this assignment, adapting it as needed.

1 True/False

[60 total points: 10 points each] For each statement below, say whether it’s true or false; if true without
further assumptions, briefly explain why it’s true (and — extra credit — what its implications are for
statistical inference); if it’s sometimes true, give the extra conditions necessary to make it true; if it’s
false, briefly explain how to change it so that it’s true and/or give an example of why it’s false. If
the statement consists of two or more sub-statements and two or more of them are false, you need to
explicitly address all of the false sub-statements in your answer.

(A) Consider the sampling model (Yi |θ B)
IID∼ p(yi |θ B) for i = 1, . . . , n, where the Yi are univariate

real values, θ is a parameter vector of length 1 ≤ k < ∞ and B summarizes Your background
information; a Bayesian analysis with the same sampling model would add a prior distribution
layer of the form (θ | B) ∼ p(θ | B) to the hierarchy. The Bernstein-von Mises theorem says that
maximum-likelihood (ML) and Bayesian inferential conclusions about θ will be similar in this
setting if (a) n is large and (b) p(θ) is diffuse (low information content), but the theorem does not
provide guidance on how large n needs to be for its conclusion to hold in any specific sampling
model.

(B) In the basic diagram that illustrates the frequentist inferential paradigm — with the population,
sample and repeated-sampling data sets, each containing N , n, and M elements, respectively
(see page 2 of the document camera notes from 24 Jan 2019) — when the population parameter
of main interest is the mean θ and the estimator is the sample mean Ȳ , You will always get a
Gaussian long-run distribution for Ȳ (in the repeated-sampling data set) as long as any one of
(N, n,M) goes to infinity.

(C) Being able to express Your sampling distribution as a member of the Exponential Family is
helpful, because

– You can then readily identify a set of sufficient statistics, and

– a conjugate prior always then exists and can be identified,

in both cases just by looking at the form of the Exponential Family.

(D) When the sampling model is a regular parametric family p(Y |θ B), where θ is a vector of length
1 < k < ∞ and Y = (Y1, . . . , Yn), then for large n the repeated-sampling distribution of the
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(vector) MLE θ̂MLE is approximately k–variate normal with mean vector θ and covariance matrix
Î−1 (the inverse of the observed information matrix), and the bias of θ̂MLE as an estimate of θ
in large samples is O

(
1
n2

)
.

(E) It’s easier to reason from the part (or the particular, or the sample) to the whole (or the gen-
eral, or the population), and that’s why statistical inference (inductive reasoning) is easier than
probability (deductive reasoning).

(F) When Your sampling model has n observations and a single parameter θ (so that k = 1), if the
sampling model is regular (i.e., if the range of possible data values doesn’t depend on θ), in large

samples the observed information Î
(
θ̂MLE

)
is O(n), meaning that

– information in θ̂MLE about θ increases linearly with n, and

– the repeated-sampling variance V̂RS

(
θ̂MLE

)
is O

(
1
n

)
.

2 Calculation

(A) [95 total points, plus a total of 25 possible extra-credit points] (Based on a problem in Gelman et
al. (2014)) In late October 1988, a survey was conducted on behalf of CBS News of n = 1,447
adults aged 18+ in the United States, to ask about their preferences in the upcoming presidential
election. Out of the 1,447 people in the sample, n1 = 727 supported George H.W. Bush, n2 = 583
supported Michael Dukakis, and n3 = 137 supported other candidates or expressed no opinion.
The polling organization used a sampling method called stratified random sampling that’s more
complicated than the two sampling methods we know about in this class — IID sampling (at
random with replacement) and simple random sampling (SRS: at random without replacement)
— but here let’s pretend that they used SRS from the population P = {all American people of
voting age in the U.S. in October 1988}. There were about 245 million Americans in 1988, of
whom about 74% were 18 or older, so P had about 181 million people in it; the total sample size
of n = 1,447 is so small in relation to the population size that we can regard the sampling as
effectively IID.

Under these conditions it can be shown, via a generalization of de Finetti’s Theorem for binary
outcomes, that — since our uncertainty about the responses of the 1,447 people in the survey is
exchangeable — the only appropriate sampling distribution for the data vector N = (n1, n2, n3)
is a generalization of the Binomial distribution called the Multinomial distribution (You can look
back in Your AMS 131 notes, or DeGroot and Schervish (2012), to renew Your acquaintance
with the Multinomial). Suppose that a population of interest contains items of k ≥ 2 types (in
the example here: people who support {Bush, Dukakis, other}, so that in this case k = 3) and
that the population proportion of items of type j is 0 < θj < 1. Letting θ = (θ1, . . . , θk), note

that there’s a restriction on the components of θ, namely
∑k

j=1 θj = 1. Now, as in the CBS
News example, suppose that someone takes an IID sample y = (y1, . . . , yn) of size n from this
population and counts how many elements in the sample are of type 1 (call this count n1), type 2
(n2), and so on up to type k (nk); let N = (n1, . . . , nk) be the (vector) random variable that keeps
track of all of the counts. In this situation people say that N follows the Multinomial distribution
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Table 1: The Binomial as a special case of the Multinomial: notational correspondence.

Binomial Multinomial (k = 2)
n n
x n1

(n− x) n2

θ θ1
(1− θ) θ2

with parameters n and θ, which is defined as follows: (N |nθ B) ∼ Multinomial(n,θ) iff

P (N1 = n1, . . . , Nk = nk |nθ B) =

{
n!

n1!n2! ···nk!
θn1
1 θn2

2 · · · θ
nk
k if n1 + · · ·+ nk = n

0 otherwise

}
, (1)

with the further restriction that 0 ≤ nj ≤ n (for all j = 1, . . . , k). The main scientific and political
interest in this problem focuses on γ = (θ1− θ2), the margin by which Bush was leading Dukakis
on the day of the survey.

(a) [5 total points for this sub-problem] Show that the Multinomial is indeed a direct gener-
alization of the Binomial, if we’re careful in the notational conventions we adopt. Here’s
what I mean: the Binomial distribution arises when somebody makes n IID success–failure
(Bernoulli) trials, each with success probability θ, and records the number X of successes;
this yields the sampling distribution

(X |n θB) ∼ Binomial(n, θ) iff P (X = x | θB) =


(
n
x

)
θx (1− θ)n−x for x = 0, . . . , n

0 otherwise

 .

(2)
Briefly and carefully explain why the correspondence between equation (2) and {a version
of equation (1) with k = 2} is as in Table 1 [5 points].

(b) [15 total points for this sub-problem, plus up to 10 possible extra credit points] Returning
now to the general Multinomial setting, briefly explain why the likelihood function for θ
given N and B is

`(θ |N B) = c
k∏
j=1

θ
nj

j , (3)

leading to the log-likelihood function (ignoring the irrelevant constant)

``(θ |N B) =
k∑
j=1

nj log θj . (4)

[5 points]. In finding the MLE θ̂ of θ, if You simply try, as usual, to set all of the first partial
derivatives of ``(θ |N B) with respect to the θj equal to 0, You’ll get a system of equations
that has no solution (try it). This is because in so doing we forgot that we need to do a
constrained optimization, in which the constraint is

∑k
j=1 θj = 1. There are thus two ways

forward to compute the MLE:
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(i) Solve the constrained optimization problem directly with Lagrange multipliers (Extra
credit [5 points]: do this), or

(ii) build the constraint directly into the likelihood function: define

`(θ1, . . . , θk−1 |N B) = c

(
k−1∏
j=1

θ
nj

j

)(
1−

k−1∑
j=1

θj

)nk

, (5)

from which (ignoring the irrelevant constant)

``(θ1, . . . , θk−1 |N B) =
k−1∑
j=1

nj log θj + nk log

(
1−

k−1∑
j=1

θj

)
. (6)

For j = 1, . . . , (k − 1), show that

∂

∂ θj
``(θ1, . . . , θk−1 |N B) =

nj
θj
− nk

1−
∑k−1

i=1 θi
(7)

[5 points]. The MLE for (θ1, . . . , θk−1) may now be found by setting ∂
∂ θj

``(θ1, . . . ,

θk−1 |N B) = 0 for j = 1, . . . , (k − 1) and solving the resulting system of (k − 1)
equations in (k − 1) unknowns (Extra credit [5 points]: do this for general k), but that
gets quite messy; let’s just do it for k = 3, which is all we need for the CBS survey
anyway. Solve the two equations{

n1

θ1
− n3

1− θ1 − θ2
= 0,

n2

θ2
− n3

1− θ1 − θ2
= 0

}
(8)

for (θ1, θ2) and then use the constraints
∑3

j=1 θj = 1 and
∑3

j=1 nj = n to get the MLE
for θ3, thereby demonstrating the (entirely obvious, after the fact) result that

θ̂ =
(
θ̂1, θ̂2, θ̂3

)
=
(n1

n
,
n2

n
,
n3

n

)
(9)

[5 points]. (The result for general k, of course, is that θ̂ = 1
n
N .)

(c) [20 total points for this sub-problem, plus up to 5 possible extra credit points] It can be shown
(Extra credit [5 points]: do this for general k, by working out the negative Hessian, evaluated
at the MLE, to get the information matrix Î and then inverting Î) that in repeated sampling

(with k = 3) the estimated covariance matrix of the MLE vector θ̂ =
(
θ̂1, θ̂2, θ̂3

)
is

Σ̂ =


θ̂1(1−θ̂1)

n
− θ̂1 θ̂2

n
− θ̂1 θ̂3

n

− θ̂1 θ̂2
n

θ̂2(1−θ̂2)
n

− θ̂2 θ̂3
n

− θ̂1 θ̂3
n

− θ̂2 θ̂3
n

θ̂3(1−θ̂3)
n

 . (10)

Explain why the form of the diagonal elements of Σ̂ makes good intuitive sense (by thinking
about the corresponding results when there are only k = 2 outcome categories); also explain
why it makes good sense that the off-diagonal elements of Σ̂ are negative [5 points]. Use Σ̂
to compute approximate large-sample standard errors for the MLEs of the θi and of γ; for
ŜE(γ̂) You can either
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(i) work it out directly by thinking about the repeated-sampling variance of the difference
of two (correlated) random quantities, or

(ii) use the fact (from AMS 131) that if θ̂ is a random vector with covariance matrix Σ̂ and
γ = aT θ for some vector a of constants, then in repeated sampling

V̂ (γ̂) = V̂
(
aT θ̂

)
= aT Σ̂a (11)

[5 points]. Finally, use Your estimated SE for γ̂ to construct an approximate (large-sample)
95% confidence interval for γ [5 points]. Was Bush ahead of Dukakis at the point when the
survey was conducted by an amount that was large in practical terms? Was Bush’s lead at
that point statistically significant? Explain briefly. [5 points]

(d) [10 total points for this sub-problem] Looking back at equation (3), if a conjugate prior exists
for the Multinomial likelihood it would have to be of the form

θ1 to a power times θ2 to a (possibly different) power times ... times θk to a (possibly
different) power.

There is such a distribution — it’s called the Dirichlet(α) distribution, with α = (α1, . . . , αk)
chosen so that all of the αj are positive:

p(θ | D) = c
k∏
j=1

θ
αj−1
j , (12)

in which D stands for the Dirichlet prior disribution assumption, which is not part of B.
Briefly explain why this means that the conjugate updating rule is{

(θ | D) ∼ Dirichlet(α)
(N |θ B) ∼ Multinomial(n,θ)

}
−→ (θ |N DB) ∼ Dirichlet(α+N ) (13)

[5 points]. Given that N = (n1, . . . , nk) and that the nj represent sample sizes (numbers
of observations yi) in each of the k Multinomial categories, briefly explain why this implies
that, if context suggests a low-information-content prior, this would correspond to choosing
the αj all close to 0. [5 points]

(e) [45 total points for this sub-problem, plus up to 10 possible extra credit points] Briefly explain
why, if You have a valid way of sampling from the Dirichlet distribution, it’s not necessary
in this problem in fitting model (13) to do MCMC sampling: IID Monte Carlo sampling
is sufficient [5 points]. It turns out that the following is a valid way to sample a vector
θ = (θ1, . . . , θk) from the Dirichlet(α) distribution:

∗ pick any β > 0 of Your choosing (β = 1 is a good choice that leads to fast random
number generation);

∗ for (j = 1, . . . , k), make k independent draws gj with draw j from the Γ(αj, β) distribu-
tion; and

∗ then just normalize:

gj
I∼ Γ(αj, β) and θj =

gj∑k
i=1 gi

, (14)

in which
I∼ means are independently distributed as.
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I’ve written an R function called rdirichlet, posted on the course web page, that implements
this algorithm. Use my function (or an equivalent in Your favorite non-R environment) to
generate M IID draws from the posterior distribution specified by model (13), using the CBS
News polling data and a diffuse Dirichlet(α) prior with α = (ε, . . . , ε) for some small ε > 0
such as 0.01; in addition to monitoring the components of θ, also monitor γ = (θ1 − θ2) [10
points]. Choose a value of M large enough so that the Monte Carlo standard errors of the
posterior means of γ and the components of θ are no larger than 0.00005, and justify Your
choice [5 points]. Make graphical and numerical summaries of the posterior distributions for
γ and for each of the components of θ, and compare Your posterior distribution for γ with
Figure 3.2 (p. 70) from the Gelman et al. (2014) book that’s available at the course web site;
also compute the 95% central posterior interval for γ [10 points]. How do Your Bayesian
answers compare with those from maximum likelihood in this problem? Explain briefly [5
points]. Compute a Monte Carlo estimate of p(γ > 0 |N DB), which quantifies the current
information about whether Bush is leading Dukakis in the population of all adult Americans,
and attach a Monte Carlo standard error to Your estimate; on the basis of this Bayesian
calculation, is Bush’s lead statistically significant? [5 points]. What substantive conclusions
do You draw about where the Presidential race stood in late October of 1988, on the basis
of Your analysis? Explain briefly [5 points]. (Extra credit [10 points]: Use Maple or some
other symbolic-computing environment (or paper and pen, if You’re brave) to see if You can
derive a closed-form expression for p(γ > 0 |N DB), and compare Your mathematical result
with Your simulation-based findings; if no such expression is possible, briefly explain why
not.)

(B) [185 total points] (This problem looks hard just because it’s long, but it’s not any harder than
usual in this class; because of the extremely compressed nature of this course, I have to do a fair
amount of teaching in this problem just to set up the relevant scientific and statistical questions.)
One of the most important priorities in treating patients who have just suffered a heart attack is
to prevent a second heart attack or stroke, which can occur shortly after the first attack if one
or more blood clots enters the blood stream and lodges in the heart or brain. This suggests that
the administration of a blood-thinning drug (which would break up blood clots and prevent their
formation) right after the first attack may keep the patient from dying from another immediate
attack. One such drug is a low dose (as low as 75mg) of the common pain-relief drug aspirin (the
usual dose for pain is 350–650mg every four hours).

Table 2 presents a summary (Draper et al. 1993) of a meta-analysis (a study in which the indi-
vidual data items are themselves studies) of k = 6 randomized controlled trials (some in Europe,
some in the U.S.), each with the same design but based on different patient cohorts (all chosen
locally to their region of their country). For example, in the study UK–1, a total of (615 + 624) =
1,239 patients who had recently experienced a heart attack and who were representative of such
people (in their region of their country) were randomized, 615 to a treatment group that received
a low-dose aspirin each day for three months, and a control group that received a placebo (a pill
that was identical in appearance to the aspirin pills received by the treatment patients, but which
had no active ingredients in it) each day for the same period of time. The treatment group in
UK–1 experienced a mortality rate over the 12–month period starting at the beginning of the
experiment of 7.97%, versus a 10.74% mortality rate in the same period in the control group.
The difference in mortality rates (in the direction (control – treatment)) in UK–1 was y1 = 2.77
percentage points of mortality; the frequentist standard error of this difference (similar to the
Bayesian posterior SD with diffuse prior information; You’re not required to demonstrate this)
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Table 2: Summary of meta-analysis of k = 6 randomized controlled trials to evaluate the efficacy of
low-dose aspirin in preventing death following a heart attack.

Aspirin (Treatment) Placebo (Control) Mortality

Number Mortality Number Mortality Difference
√
Vi = ŜE

Study (i) of Patients Rate (%) of Patients Rate (%) (yi) (%) of Difference (%)
UK–1 615 7.97 624 10.74 +2.77 1.65
CDPA 758 5.80 771 8.30 +2.50 1.31
GAMS 317 8.52 309 10.36 +1.84 2.34
UK–2 832 12.26 850 14.82 +2.56 1.67
PARIS 810 10.49 406 12.81 +2.31 1.98
AMIS 2267 10.85 2257 9.70 −1.15 0.90
Total 5599 9.88 5217 10.73 +0.86 0.59

for UK–1 was
√
V1 = 1.65 percentage points. The point of meta-analysis in this case study is

that, as long as the experiments being meta-analyzed are of the same phenomenon (i.e., as long
as they’re like a random sample of experiments that could have been done), a combined summary
of all k = 6 studies should provide better medical guidance on the effectiveness of aspirin after
heart attack in the population

P = {all patients in Europe and the U.S. in the early 1990s who have recently had a
heart attack and who are similar to the patients summarized in Table 2 in all relevant
ways}

than an analysis based only on a single experiment.

(a) [20 total points for this sub-problem] Descriptively summarize (in words and numbers) the
apparent effects of aspirin on mortality in Table 2. [5 points] Do the differences observed in
the table seem large to You in practical terms? [5 points] Does it look like aspirin may be
beneficial? Explain briefly. [5 points] Identify the single most unusual feature of the data in
Table 2. [5 points]

(b) [10 total points for this sub-problem] When You’re comparing studies in a meta-analysis,
a phenomenon called between-study heterogeneity may be present: this is just a fancy way
of saying that the results of the studies You’re thinking of combining exhibit substantial
differences from one study to another. A naive analysis of the data in Table 2 that pretended
that any between-study differences are negligible would pool all of the raw data into one big
data set; for example, adding all of the treatment–group sample sizes would yield a big
composite treatment group with 5,599 patients in it, whose mortality rate was 9.88% (see
the Total row in Table 2). By examining (the six mortality rates in the treatment part of
the meta-analysis) and (the corresponding six control mortality rates), briefly explain why
Table 2 provides strong evidence of between-study heterogeneity, so that naive pooling is
a bad idea with this data set. Can You think of a medical reason why the results across
studies are so different? Explain briefly. [10 points]

A standard Bayesian model for meta-analytic data with substantial between-study heterogeneity
is as follows:
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(µσ | B) ∼ p(µσ | B)

(θi |µσN B)
IID∼ N(µ, σ2)

(yi | θi µσ Vi B)
I∼ N(θi, Vi) (15)

This is our first example of a Bayesian hierarchical model with more than two levels in the
hierarchy: the data set summarized in Table 2 is also referred to as hierarchical in character, with
(in the usual jargon) patients nested inside study (this just means that each patient participated
in one and only one of the studies). In this model,

– The yi are the observed mortality differences (column 6) in Table 2;

– The assumption of Normality in the bottom level of the hierarchy arises from context in this
case study: there are so many patients going into each of the treatment and control mortality
estimates that the Central Limit Theorem ensures Normality of the yi. For the same reason
it makes sense to think of the Vi (see column 7 in Table 2), the squared estimated standard
errors of the yi, as known (they’re each based on data from hundreds of patients);

– The θi are called random effects : θi represents what You would have seen if the experimenters
in study i had done their experiment, not just on the patients in their sample, but on all
the patients similar to those in their sample from their region of their country. Because
the θi are trying to measure the same thing (the reduction in mortality from daily low-dose
aspirin), our uncertainty about them before we saw the data was exchangeable, meaning
that it’s reasonable to model them as conditionally IID from a single distribution, which is
N(µ, σ2) in model (15). This assumption, denoted by N in the second line of the model,
does not arise from context, but is instead conventional (and it turns out that, with only
k = 6 studies worth of data, this Normality assumption can’t even be challenged effectively;
even so, it leads to useful results, as we will see);

– σ is an important parameter in this model: it quantifies the extent of between-study het-
erogeneity. If σ were somehow known to be 0, the pooling analysis in part (b) would be
reasonable; and

– µ is the most important parameter of all here: it represents the effect of low-dose aspirin on
mortality in the population P , under the (at least somewhat plausible) assumption that the
6 studies are like a random sample of studies that could have been performed.

Let y = (y1, . . . , yk) and V = (V1, . . . , Vk). It can be shown (You’re not asked to show this; the
calculation is made by (in the jargon) integrating out the random effects θi) that the likelihood
function for η , (µ, σ) in model (15) is

`(µσ |y V N B) =
k∏
i=1

1√
Vi + σ2

exp

[
−1

2

(yi − µ)2

Vi + σ2

]
, (16)

leading to the log-likelihood function

``(µσ |y V N B) = −1

2

k∑
i=1

[
log(Vi + σ2) +

(yi − µ)2

Vi + σ2

]
. (17)
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As we’ve discussed in class, when the unknown η is a vector of length k ≥ 2, in repeated sampling
with a large data set D the vector MLE η̂ has an approximate k–variate Normal distribution:

(η̂ |DB) ∼ Nk

(
η, Î−1

)
, (18)

in which the Fisher information matrix Î is minus the Hessian (matrix of second partial derivatives
of the log-likelihood function) evaluated at η̂ and Î−1 is the inverse of Î; estimated standard errors
of the components η̂j of η̂ are then available as the square roots of the diagonal entries of Î−1.
In this problem, then, as long as we do indeed have a lot of data, the likelihood function should
look like a bivariate Normal distribution; when viewed with a perspective plot, it should look like
a mountain with a single peak (and a contour plot of it should look like concentric ellipses), and
a perspective plot of the log-likelihood function should look like a bowl-shaped-down paraboloid.

Making these plots is a bit more involved than in our previous case studies, but the basic idea
is the same: in this case, we construct a two-dimensional grid in µ and σ, evaluate the ` and ``
functions on the grid, and graph them with perspective and contour plots. The main issue to
settle in making such plots is what region in (µ, σ) space to explore. Even though the pooling
analysis is likely to be suboptimal here, we can get a rough idea of where the maximum lives (and
how far to go either way from the maximum) from the Total row in Table 2: from this µ may
perhaps be around 0.86, give or take about 0.59, so I’ll go 4 standard errors either way (remember
the Empirical Rule) and set the µ grid from −1.5 to 3.2. A good range for σ is less clear; some
guidance comes from the SD, 1.48, of the yi. Since σ cannot be negative, I’ll go all the way down
to 0 for its left limit, and to get a broad range of σ values I’ll go up to (3 · 1.48)

.
= 4.4.

(c) [10 total points for this sub-problem] I’ve written R code to create contour and perspective
plots of the likelihood and log-likelihood functions and posted it on the course web page,
using the (µ, σ) grid mentioned above. Run my code (or an equivalent program in another
language) and examine the resulting plots; include the (2 × 2) plot that the code produces
in Your solutions.

(i) With hierarchical data, the concept of sample size is trickier: this meta-analysis has a
total of N = 10,816 patients but only k = 6 studies. It turns out that the effective
sample sizes for µ and σ are driven mainly by N and k, respectively. Do Your plots
resemble the large-sample bivariate Normal shapes described above? Explain briefly. [5
points]

(ii) Does it appear that the likelihood and log-likelihood functions have well-defined unique
maxima, at least within the (µ, σ) grid You’ve used? Explain briefly. [5 points]

In this problem there are two ways to find η̂, both of which are useful to know about in contem-
porary data science, and each of which provides useful information that the other does not:

– As we saw in class and in problem 2(A) on this test, when the unknown — here η = (µ, σ)
— has dimension k > 1 and the problem is regular (in the exponential-family sense), one
standard approach to obtain the MLEs, applied to the aspirin meta-analysis, involves (a)
creating a system of 2 equations in 2 unknowns by setting each of the first partials with
respect to µ and σ equal to 0 and (b) solving for (µ, σ). Sometimes these equations will have
closed-form algebraic solutions, but more often in two or more dimensions they have to be
solved numerically.
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– The log-likelihood here is a function `` : Rk → R that takes as input a vector η of real
numbers of length k and returns a real number; such functions can be maximized with
general-purpose optimizers. R has a variety of built-in and CRAN-package routines that do
this; perhaps the simplest one is the built-in function optim.

I’ve written R code to implement both approaches and posted it on the course web page; let’s
look at how this works, starting with optim first.

(d) [45 total points for this sub-problem] Run my optim code (or an equivalent program in
another language) and examine the resulting output (include this output in Your Appendix).

(i) Did the code report convergence to a (local) maximum of the log-likelihood function?
[5 points] What did the MLE vector turn out to be, to 4 significant figures? [5 points]
Did the maximum value of `` agree with what You saw in Your plots in part (c)? [5
points] How many function evaluations did optim need to find the MLEs? [5 points]

(ii) Use the estimated covariance matrix of the MLEs from the optim output to compute
estimated standard errors for µ̂MLE and σ̂MLE (the hint: in the R code may help) [10
points]. Since the dose of aspirin in the Treatment group was so low, an excellent clinical
argument can be made that the only possibilities for aspirin’s effect in these experiments
were that aspirin either (I) made no difference or (II) was beneficial in reducing mortality.
Mr. Neyman’s confidence-interval machinery can be modified to accommodate one-sided
situations like this: it can be shown (You’re not asked to show this) that

µ̂MLE − Φ−1(1− α) · ŜE (µ̂MLE) (19)

is an approximate 100 (1−α)% lower confidence bound (LCB) for µ; in other words, we’re
100(1 − α)% confident that µ is at least equal to the value in equation (19). Compute
this LCB for α = 0.05. [5 points] At the 95% level, using maximum likelihood, are
we confident that aspirin would indeed reduce mortality for heart-attack patients in the
population P to which we wish to generalize, based on this meta-analysis? Explain
briefly. [10 points]

Now, as for the method involving setting the first partials of `` to 0, it can be shown (You’re not
asked to show this) that one way to express the resulting system of equations with model (15) is

µ̂ =

∑k
i=1 Ŵi yi∑k
i=1 Ŵi

and σ̂2 =

∑k
i=1 Ŵ

2
i [(yi − µ̂)2 − Vi]∑k

i=1 Ŵ
2
i

, in which Ŵi =
1

Vi + σ̂2
. (20)

As a basis for solving for (µ̂, σ̂2), this looks odd: the equation for µ̂ looks okay until You remember
that Ŵi depends on σ̂2, and the equation for σ2 is even stranger since it has σ̂2 on both sides
(again through Ŵi). However, it turns out that if You iterate these equations — starting with
σ̂2 = 0, computing Ŵi, using that to compute µ̂, using the resulting µ̂ to compute a new σ̂2, and
so on — they will converge to the MLEs (with one wrinkle: it’s possible that σ̂2 may converge
to a negative number (!), in which case people just set σ̂2

MLE = 0). A reasonable convergence
criterion involves stopping when two consecutive values of σ̂2 differ by no more than some ε such
as 10−7. As part of this technology, there’s also a formula for an approximate estimated standard
error for µ̂MLE:

ŜE (µ̂MLE) =

[
k∑
i=1

1

Vi + σ̂2
MLE

]− 1
2

(21)
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(e) [10 total points for this sub-problem] I’ve written R code to implement this algorithm and
posted it on the course web page. Run my code (or an equivalent program in another
language) and examine the output (include this output in Your Appendix).

(i) How many iterations were needed to achieve convergence with the ε mentioned above?
Roughly how much clock time did the algorithm take? [5 points]

(ii) Your execution of the code should have produced the following results: µ̂MLE
.
= 1.447,

with an approximate estimated standard error of ŜE (µ̂MLE)
.
= 0.8089, and (σ̂MLE,

σ̂2
MLE)

.
= (1.237, 1.531). Bearing in mind (from Table 2) that the typical mortality rate

for the control-group patients was about 11%, would You say that a decline in mortality
from taking low-dose aspirin of 1.45 percentage points is large in practical (medical)
terms? Would You say that an amount of between-study heterogeneity corresponding
to an SD of 1.24 percentage points is large in practical terms? Explain briefly in each
case. [5 points]

The maximum-likelihood estimates in this problem are also called empirical Bayes estimates,
because it turns out that they correspond to a Bayesian analysis in which the prior distribution
is to some extent based on the data (this should sound to You like a questionable idea from the
Bayesian perspective, because it uses the data both to inform the likelihood function and the
prior; it won’t surprise You to hear that with small k the result tends to be underpropagation of
uncertainty). It can be shown (You’re not asked to show this) that the conditional distributions
of the random effects θi in model (15) given the data, and also given µ and σ, are as follows:

(θi | yi µσN B)
I∼ N [θ∗i , Vi(1−Bi)] , with θ∗i = (1−Bi) yi +Bi µ and Bi =

Vi
Vi + σ2

. (22)

In other words, the conditional mean θ∗i of the effect for study i given (yi, µ, σ) is a weighted
average of the sample mean for that study, yi, and the overall mean µ. The weights are given
by what are called shrinkage factors Bi, which in turn depend on how the variability Vi within
study i compares to the between-study variability σ2: the more accurately yi estimates θi, the
more weight the local estimate yi gets in the weighted average (which should make excellent
sense to you). The term shrinkage refers to the fact that, with this approach, unusually high
or low individual studies are drawn back or shrunken toward the overall mean µ when making
the calculation (1 − Bi) yi + Bi µ. Note that θ∗i uses data from all the studies to estimate the
effect for study i — this is referred to as borrowing strength in the estimation process, and it
also makes excellent sense, because model (15) expresses our scientific judgment that the k = 6
studies are similar to each other, which means that there’s information in the other (k−1) studies
when estimating what’s going on in study i. By functional invariance, the maximum-likelihood
estimates of the Bi and θi are

B̂i =
Vi

Vi + σ̂2
and θ̂i = (1− B̂i) yi + B̂i µ̂ , (23)

and there’s an approximate estimated standard error formula for the θ̂i:

ŜE
(
θ̂i

)
=

√
Vi (1− B̂i) . (24)
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Table 3: Maximum-likelihood empirical Bayes results in the aspirin meta-analysis. The symbols in the
column headings are explained in the text.

Study (i) ni pi Ŵi Ŵ ∗
i B̂i yi θ̂i ŜE

(
θ̂i

)
1 1239 0.115 0.235 0.154 0.640 0.990
2 0.141 0.202 0.529 2.50 1.94 0.899
3 626 0.0579 0.0934 0.782 1.84 1.53
4 1682 0.232 0.646 2.56 1.84 0.994
5 0.112 0.183 0.120 0.719 1.04
6 4524 0.427 0.280 0.346 −1.15 −0.251

(f) [30 total points for this sub-problem] Use the output from Your previous code execution to
complete Table 3, and examine the results. In this table, ni is the combined (Treatment +
Control) sample size for study i, pi = ni∑k

j=1 nj
is the number of patients in study i expressed

as a proportion of the overall number of patients, Ŵ ∗
i = Ŵi∑k

j=1 Ŵj
is similarly the Ŵ vector

normalized to sum to 1 (thus Ŵ ∗
i is the amount of weight that the data value yi from study

i gets in the weighted average defining µ̂); the other column headings have already been
defined.

(i) You can see in equation (23) that B̂i is the amount of weight given to the overall mean
µ̂ in computing the MLE θ̂i for study i. One of the points of shrinkage estimation in
meta-analysis is to pull outlier studies toward the overall mean, so that they don’t overly
influence the results. Why is it, then, that study 6 (AMIS), whose yi is so different from
the other yi values, only gets weight B̂6

.
= 0.346 in the computation of θ̂6? Explain

briefly. [10 points]

(ii) Compare the pi and Ŵ ∗
i columns in Table 3. How do You explain the fact that study

6 (AMIS) had about 42% of the total number of patients but only got 28% of the total
weight in computing µ̂? [10 points]

(iii) Compute the unweighted average of the θ̂i values in Table 3. How, if at all, does the
result relate to Your other maximum-likelihood estimation findings? Is what You’ve just
found sensible? Explain briefly. [10 points]

In the rest of this problem You’ll perform a Bayesian analysis of the data in Table 2. Looking
back at equation (15), the second and third rows of the hierarchical model are the same as in
the maximum-likelihood approach, but we now need to specify a prior distribution for (µ, σ).
The meta-analysis summarized by Table 2 was the first of its kind, so I want to build a low-
information-content prior. There is no conjugate prior for this situation; we need to use MCMC
to quantify the posterior.

It turns out that there is typically little harm in treating µ and σ as independent in constructing
p(µσ | B) (whatever dependence they should have in the posterior will be imposed by the likeli-
hood), so I’m going to use a prior of the form p(µσ | B) = p(µ | B) · p(σ | B). There are a number
of ways to make this prior diffuse; research has shown two things:

– the posterior is insensitive to the precise details specifying p(µ | B) as long as it’s close
to flat in the region where the likelihood is appreciable, so let’s use a prior of the form
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Table 4: Maximum-likelihood and Bayesian results in the aspirin meta-analysis; — means that results
with the indicated method for the indicated quantity are not available.

Maximum-Likelihood Bayesian
Standard Error Posterior

Quantity Estimate Information-Based Empirical Bayes Mean SD
µ 1.447 0.8394 0.8089 1.502 1.056
σ 1.237 0.6791 — 1.896 1.079
θ1 1.923 — 0.9899
θ2 — 0.8995 2.042
θ3 1.533 — 1.592 1.542
θ4 1.841 — 0.9941 1.315
θ5 — 1.049 1.812 1.431
θ6 −0.2514 — 0.7278 −0.4327 0.9425

(µ | B) ∼ Uniform(A,B), where A and B are chosen to avoid inappropriate truncation of the
posterior; and

– care is required in specifying p(σ | B) diffusely to achieve good calibration, especially when k
is small (which it is here). The consensus of the research on this topic is that a well-calibrated
choice that achieves a diffuse prior on σ is (σ | B) ∼ Uniform(0, C), where C is chosen large
enough to again avoid truncation of the posterior (but not much larger than that).

I’ve written rjags and other R code so that You can do the MCMC computations in this case
study, and posted it on the course web page; after some experimentation I chose (A,B,C) =
(−2, 5, 6) in the prior specification. Run my code (or an equivalent program in some other
language) and examine the output; make PDF files of all plots the code produces and include
them in Your solutions.

(g) [60 total points for this sub-problem] Use the output from Your MCMC code execution to
complete Table 4 by filling in the blank entries; answering the questions below will also
involve extracting additional numbers from the output.

(i) Compare the posterior mean for µ with its maximum-likelihood (ML) counterpart; then
compare the posterior SD for µ with the two ML standard errors, one likelihood-based
and the other from empirical Bayes considerations. [10 points] Research on hierarchical
models with random effects, such as model (15), has shown that Bayes and ML findings
will either be similar (when k is large) or the ML approach will often underestimate
uncertainty when it differs from Bayes. Does the second of those two possibilities appear
to have happened here? Explain briefly. [5 points]

(ii) Compare the posterior mean for σ with its ML counterpart; are they close enough that
it doesn’t matter which one You would report in a research article or white paper for a
client? [10 points] Extract the 95% Bayesian posterior interval for σ from the output
and report it here. [5 points] Compute the large-sample-approximate 95% confidence
interval for σ from maximum-likelihood, thereby showing that it has embarrassed itself
by going negative. [5 points] Focusing on the Bayesian interval, if the Devil’s Advocate
said to You, “I think that σ is actually 0 in the population of {randomized controlled
trials that could have been run in the late 1980s in Europe and the U.S. to compare
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aspirin with placebo for patients who have had a heart attack}, and the only reason
You got something different from 0 was that the 6 studies in Your meta-analysis were
unlucky,” would You agree with them? Does this mean that σ is statistically significantly
different from 0? Explain briefly. [10 points]

(iii) Show (by extracting the relevant number from Your output) that, conditional on model
(15) and the prior used to produce Your output, the posterior probability that low-dose
aspirin would be beneficial, if used in the population P identified just above item (a) in
this problem, is about 93%. [5 points] Is this standard of envidence strong enough for
You personally to recommend the use of low-dose aspirin to prevent future heart attacks
and strokes in P? Briefly explain Your reasoning. (There is no single right answer to
this question.) [10 points]
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