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Here are the ground rules: this test is open-book and open-notes, and consists of two problems
(true/false and calculation); each of the 12 true/false questions is worth 10 points, and
the calculation problem is worth 215 total points, for a total of 335 points (plus 5
extra-credit points).

The right answer with no reasoning to support it, or incorrect reasoning, will get half credit,
so try to make a serious effort on each part of each problem (this will ensure you at least half
credit). In an AMS graduate class I taught in 2012, on a take-home test like this one there were
15 true/false questions, worth a total of 150 points; one student got a score of 92 out of 150 (61%,
a D−, in a graduate class where B− is the lowest passing grade) on that part of the test, for
repeatedly answering just “true” or “false” with no explanation. Don’t let that happen to you.

On non-extra-credit problems, I mentally start everybody out at −0 (i.e., with a perfect score), and
then you accumulate negative points for incorrect answers and/or reasoning, or parts of problems
left blank. On extra-credit problems, the usual outcome is that you go forward (in the sense that
your overall score goes up) or you at least stay level, but please note that it’s also possible to go
backwards on such problems (e.g., if you accumulate +3 for part of an extra-credit problem but
−4 for the rest of it, for saying or doing something egregiously wrong).

This test is to be entirely your own efforts; do not collaborate with anyone or get help from anyone
but me or our TA (René Gutierrez). The intent is that the course lecture notes and readings should
be sufficient to provide you with all the guidance you need to solve the problems posed below,
but you may use other written materials (e.g., the web, journal articles, and books other than
those already mentioned in the readings), provided that you cite your sources thoroughly
and accurately; you will lose (substantial) credit for, e.g., lifting blocks of text directly from
wikipedia and inserting them into your paper without full attribution.

If it’s clear that (for example) two people have worked together on a part of a problem that’s worth
20 points, and each answer would have earned 16 points if it had not arisen from a collaboration,
then each person will receive 8 of the 16 points collectively earned (for a total score of 8 out of
20), and I reserve the right to impose additional penalties at my discretion. If you solve a problem
on your own and then share your solution with anyone else (because people from your cultural
background routinely do this, or out of pity, or kindness, or whatever motive you may believe you
have; it doesn’t matter), you’re just as guilty of illegal collaboration as the person who took your
solution from you, and both of you will receive the same penalty. This sort of thing is necessary on
behalf of the many people who do not cheat, to ensure that their scores are meaningfully earned.
In the AMS graduate class in 2012 mentioned above, five people failed the class because of illegal
collaboration; don’t let that happen to you.
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In class I’ve demonstrated numerical work in R; you can (of course) make the calculations and
plots requested in the problems below in any environment you prefer (e.g., Matlab, ...). If You
end up using any of the R code I post on the course web page to help You with the programming,
please put a sentence in Your solutions something like the following: “I started with some of the
code from the AMS 206 web page and modified it as necessary to solve this problem.”

Those of You who are using LaTeX or some other word-processing environment to prepare Your
solutions can stick quote blocks below each question, into which You can type Your answers (I
suggest that You use bold or italic font to distinguish Your solutions from the questions). If You’re
submitting Your answers in longhand, which is perfectly acceptable, You can just write them out
on separate sheets of paper, making sure that the grader can easily figure out which chunk of text
is the solution to which part of which problem.

1 True/False

[120 total points: 10 points each] For each statement below, say whether it’s true or false; if
true without further assumptions, briefly explain why it’s true (and — extra credit — what its
implications are for statistical inference); if it’s sometimes true, give the extra conditions necessary
to make it true; if it’s false, briefly explain how to change it so that it’s true and/or give an example
of why it’s false. If the statement consists of two or more sub-statements and two or more of them
are false, you need to explicitly address all of the false sub-statements in your answer.

(A) You’re about to spin a roulette wheel, which will result in a metal ball landing in one of
38 slots numbered Ω = {0, 00, 1, 2, . . . , 36}; 18 of the numbers from 1 to 36 are colored red,
18 are black, and 0 and 00 are green. You regard this wheel-spinning as fair, by which
You mean that all 38 elemental outcomes in Ω are equipossible. Under Your assumption of
fairness, the classical (Pascal-Fermat) probability of getting a red number on the next spin
exists, is unique, and equals 18

38
.

(B) Under the same conditions as (A), the Kolmogorov (frequentist) probability of getting a red
number on the next spin exists, is unique, and equals 18

38
.

(C) Repeat (A) and (B) but removing the assumption that the wheel-spinning is fair, and not
replacing it with any other assumption about the nature of the data-generating process
(taking the outcomes of the wheel spins as data).

(D) In the Bernoulli sampling model, in which (Y1, . . . , Yn | θB)
IID∼ Bernoulli(θ), the sum sn =∑n

i=1 yi of the observed data values y = (y1, . . . , yn) is sufficient for inference about θ, and
this means that in this model You can throw away the data vector y and focus only on sn
without any loss of information whatsoever.

(E) In learning how to do a good job on the task of uncertainty quantification, it’s good to know
quite a bit about both the Bayesian and frequentist paradigms, because (a) the Bayesian
approach to probability ensures logical internal consistency of Your uncertainty assessments
but does not guarantee good calibration, and (b) the frequentist approach to probability
provides a natural framework in which to see if Your Bayesian answer is well-calibrated.
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(F) The Beta(θ |α, β) parametric family of distributions is useful as a source of prior distributions
when the sampling model is as in (D), because all distributional shapes (symmetric, skewed,
multimodal, ...) on (0, 1) are realizable in this family.

(G) Specifying the ingredients {p(θ | B), p(D | θB), (A |B), U(a, θ | B)} in Your model for Your
uncertainty about an unknown θ (in light of background information B and data D) is
typically easy, because in any given problem there will typically be one and only one way to
specify each of these ingredients; an example is the Bernoulli sampling distribution p(D | θB)
arising uniquely, under exchangeability, from de Finetti’s Theorem for binary outcomes.

(H) In trying to construct a good uncertainty assessment of the form P (A | B), where A is a
proposition and B is a proposition of the form (B1 and B2 and . . . and Bk), You should
try hard not to condition on any propositions Bi that are false, because that would be the
probabilistic equivalent of dividing by zero.

(I) The kind of objectivity in probability assessment sought by people like Venn, in which
all reasonable people would agree on the assessed value, is often impossible to achieve,
because all such assessments are conditional on the (1) assumptions, (2) judgments and
(3) background information of the person making the probability assessment, and different
reasonable people can differ along any of those three dimensions.

(J) When making a decision in the face of uncertainty about an unknown θ, after specifying
Your action space (A |B) and utility function U(a, θ | B) and agreeing on the convention
that large utility values are to be preferred over small ones, the optimal decision is found by
maximizing U(a, θ | B) over all a ∈ (A |B).

(K) One reason that Bayesian inference was not widely used in the early part of the 20th cen-
tury was that approximating the (potentially high-dimensional) integrals arising from this
approach was difficult in an era when computing was slow and the Laplace-approximation
technique had been forgotten.

(L) Jaynes (2003, pp. 21–22) makes a useful distinction between {reality} (epistemology) and
{Your current information about reality} (ontology); this distinction is useful in probabilis-
tic modeling because {the world} does not necessarily change every time {Your state of
knowledge about the world} changes.

2 Calculation

(A) [85 total points] Consider the HIV screening example we looked at in Case Study (CS) 1,
in which (θ = 1) = (the patient is HIV positive) and (y1 = 1) = (the blood test says the
patient is HIV positive), but now let’s make two changes: the time is now 1985, when the
first enzyme-linked immunosorbent assay (ELISA) blood test was approved in the U.S. for
use in detecting HIV, and You now work for the Red Cross (RC), which maintains a blood
bank (from which units of blood for surgeries in hospitals are drawn) and which is extremely
interested in not letting HIV into their blood supply. Continuing to use CS 1 notation, let
α = P (θ = 1 | B) be the prevalence of HIV in people whose background risk factors are
summarized by B; and let β = P (y1 = 1 | θ = 1) and γ = P (y1 = 0 | θ = 0) be the sensitivity

3



Table 1: The basic disease screening (2 × 2) table, with θ = (1 if the disease is truly present, 0
otherwise), y1 = (1 if the screening test says the disease is present, 0 otherwise), and (α, β, γ) =
(prevalence, sensitivity, specificity).

Truth
HIV +© (θ = 1) HIV −© (θ = 0) Total

Blood +© (y1 = 1) αβ (1− α) (1− γ) αβ + (1− α) (1− γ)
Test −© (y1 = 0) α (1− β) (1− α) γ α (1− β) + (1− α) γ

Total α (1− α) 1

and specificity, respectively, of the first ELISA test (let’s call it E1). According to Chappel,
Wilson and Dax (2009, Future Microbiology, 8, 963–982), (β, γ) = (0.99, 0.95) for E1, so the
first test had good sensitivity but did not reach the same performance level in specificity.
Poking around on www.census.gov, You’ll find that the population of the United States in
1985 consisted of about 238 million people, of whom about N = 175 million people were 18
years old or older; let’s assume that HIV is concentrated entirely in the 18+ subpopulation
(which is true to a good approximation). The basic (2 × 2) table for disease screening, in
the notation of this problem, is given in Table 1.

(i) Use this table to write down explicit formulas in terms of (α, β, γ) for two frequently-
used quantities in disease screening that we haven’t looked at yet: the positive predictive
value (PPV, also known as the predictive value of a positive test result), P (θ = 1 | y1 =
1), and the negative predictive value (NPV, with a similar interpretation for negative
test results), P (θ = 0 | y1 = 0), of screening tests such as E1. How do the PPV and
NPV relate to the false positive and false negative rates (FPR, FNR)? Explain briefly.
[20 points]

(ii) The Centers for Disease Control and Prevention (CDC, not CDCP, for some reason)
estimated in 2016 that the U.S. prevalence of HIV in 1985 was based on about 500,000
cases, for a prevalence rate in the 18+ subpopulation of 500000

175000000
= α∗ .

= 0.00286, about
0.3% (roughly the same as the U.S. prevalence rate today). The RC would not have
been privy to this information in 1985, but assuming that HIV status and the blood-
donation choice mechanism are independent, which is almost certainly upper-bounding
for α, would give α∗ as the RC prevalence. Use this value for α and the (β, γ) values
for E1 to compute the PPV, NPV, FPR and FNR values defining the blood-screening
real-world environment facing the RC in 1985. Would You say that E1 was highly
successful at keeping HIV out of the RC blood supply in 1985? Explain briefly. [25
points]

(iii) Holding (β, γ) at the E1 values and varying α from 0 to (say) 10α∗, plot the PPV and
NPV as functions of α. How sensitive were each of these quantities to prevalence in the
1985 RC environment? Explain briefly. [15 points]

Shortly after E1 was approved in 1985, a member of the U.S. Congress made a speech on
the floor of the House of Representatives expressing the opinion that HIV was such a serious
public health threat that everyone 18+ years old should be tested with E1. The goal in this
final part of the problem is to fill out a new version of Table 1 with numbers quantifying
what would have happened to the N = 175 million Americans under this Congressperson’s
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Table 2: Partially-filled-out table of expected numbers of people receiving HIV diagnoses under the
Congressperson’s plan.

Truth
HIV +© (θ = 1) HIV −© (θ = 0) Total

Blood +© (y1 = 1) 495,000 N (1− α) (1− γ) N [αβ + (1− α) (1− γ)]
Test −© (y1 = 0) N α (1− β) N (1− α) γ 165,780,000

Total N α 174,500,000 N

plan. If we knew for sure that α = α∗, we could just use that value of α and the already-
established values of (β, γ), and multiply all of the resulting entries in Table 1 by N , but
we don’t know that for sure. Consider α an unknown quantity (in AMS 131 we would have
called it a random variable) with expected value E(α | B) = α∗.

(iv) By looking at the form of all 9 of the entries in Table 1 (including the margins) as func-
tions of α (and remembering basic properties of expectation from AMS 131), briefly ex-
plain why we can obtain a table of expected cell and margin counts just by multiplying all
of the entries in Table 1 by N and then substituting in (α, β, γ) =

(
500000

175000000
, 0.99, 0.95

)
.

Complete Table 2 by filling in the empty cells and margins; I’ve given You a headstart
on some of them. Briefly summarize the likely good and bad outcomes of the Con-
gressperson’s plan, when viewed as an instance of national health policy. In Your view,
would the good outcomes outweigh the bad, or the other way around, or is it hard
to come to a clear judgment? Explain briefly. (Note that we’re doing what’s called
a benefit-only analysis here, not a cost-benefit analysis, since we’ve not taken into ac-
count how much administering 175,000,000 E1 tests would cost in time and money.)
[25 points]

(B) [130 total points, plus 5 extra-credit points] (Bayesian conjugate inference with the Expo-
nential distribution) In a consulting project that one of my Ph.D. students and I worked on
at the University of Bath in England before I came to Santa Cruz, a researcher from the De-
partment of Electronic and Electrical Engineering (EEE) at Bath wanted help in analyzing
some data on failure times for a particular kind of metal wire (in this problem, failure time
was defined to be the number of times the wire could be mechanically stressed by a machine
at a given point along the metal before it broke). The n = 14 raw data values yi in one part
of her experiment, arranged in ascending order, were

495 541 1461 1555 1603 2201 2750 3468 3516 4319 6622 7728 13159 21194

From the context C of this problem, Your uncertainty about these data values before they
were observed is exchangeable, which implies that it’s appropriate to model the yi as condi-
tionally IID, but from what distribution? The simplest model for failure time data involves
the Exponential distribution:

(yi |λE B)
IID∼ Exponential(λ) : i.e., p(yi |λE B) =

{
1
λ

exp(−yi
λ

) yi > 0
0 otherwise

}
(1)

for some λ > 0, in which E stands for the Exponential sampling distribution assumption
(which is not part of B, since it’s not implied by problem context but has instead been
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chosen for simplicity). (NB This distribution can be parameterized either in terms of λ or
1
λ
; whenever it comes up, You need to be careful which parameterization is in use.)

(i) To see if this model fits the data set given above, You can make an Exponential probabil-
ity plot, analogous to a Gaussian quantile-quantile plot (qqplot) to check for Normality.
In fact the idea works for more or less any distribution: You plot

y(i) (vertical axis) versus F−1

(
i− 0.5

n

)
, (2)

where y(i) are the y values sorted from smallest to largest and F is the CDF of the dis-
tribution You’re considering (the 0.5 is in the numerator to avoid problems at the edges
of the data). In so doing You’re graphing the data values against an approximation of
what You would have expected for the data values if the CDF of the yi really had been
F , so the plot should resemble the 45◦ line if the fit is good.

(a) Work out the CDF FY (y |λ) of the Exponential(λ) distribution (parameterized as
in equation (1) above) and show that its inverse CDF is given by

FY (y |λ) = p ⇐⇒ y = F−1(p |λ) = −λ log(1− p) . (3)

[10 points]

(b) To use equation (3) to make the plot, we need a decent estimate of λ. Write down
the likelihood and log-likelihood functions in this model, simplified as much as You
can, and plot them (on different graphs, and with λ ranging on the horizontal scale
from 2,000 to 15,000) using the data values given above. Briefly explain why the
form of Your log-likelihood function implies that ȳ, the sample mean, is sufficient
for λ in the Exponential sampling model. Show that the maximum likelihood
estimate of λ in this model is λ̂MLE = ȳ, and use this (i.e., take λ = λ̂MLE in (3)) to
make an Exponential probability plot of the 14 data values above, superimposing
the 45◦ line on it. Informally, does the Exponential model appear to provide a
good fit to the data? Explain briefly. [35 points]

(ii) By regarding Your likelihood in 2(B)(i)(b) as an unnormalized probability density func-
tion for λ, show that the conjugate family for the Exponential(λ) likelihood (parame-
terized as in (1)) is the set of Inverse Gamma distributions Γ−1(α, β) for α > 0, β > 0
(NB W ∼ Γ−1(α, β) just means that 1

W
∼ Γ(α, β); see Table A.1 in Appendix A in

Gelman et al. (2014)):

λ ∼ Γ−1(α, β) ⇐⇒ p(λ) =

{ βα

Γ(α)
λ−(α+1) exp

(
−β
λ

)
for λ > 0

0 otherwise

}
. (4)

[5 points]

(iii) By directly using Bayes’s Theorem (and ignoring constants), show that the prior-to-
posterior updating rule in this model is{

(λ | IG) ∼ Γ−1(α, β)

(Yi |λE B)
IID∼ Exponential(λ)

}
=⇒ (λ |y IGE B) ∼ Γ−1(α + n, β + nȳ) , (5)

in which IG stands for the Inverse Gamma sampling distribution assumption and
y = (y1, . . . , yn). [10 points]
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(iv) It turns out that the mean and variance of the Γ−1(α, β) distribution are β
α−1

(when

α > 1) and β2

(α−1)2(α−2)
(as long as α > 2), respectively. Use this to write down an

explicit formula showing that the posterior mean is a weighted average of the prior and
sample means, and conclude from this formula that n0 = (α − 1) is the prior effective
sample size. Note also from the formula for the likelihood in this problem that, when
thought of as a distribution in λ, it’s equivalent to a constant times the Γ−1(n− 1, n ȳ)
distribution. [10 points]

(v) The researcher from EEE has prior information from another experiment she judges to
be comparable to this one: from this other experiment the prior for λ should have a
mean of about µ0 = 4,500 and an SD of about σ0 = 1,800.

(a) Show that this corresponds to a Γ−1(α0, β0) prior with (α0, β0) = (8.25, 32625),
and therefore to a prior sample size of about 7. Is this amount of prior information
small, medium or large in the context of her data set? Explain briefly. [10 points]

(b) Thinking of each of the prior, likelihood and posterior densities as Inverse Gamma
distributions, work out the SDs of each of these information sources, and numer-
ically summarize the updating from prior to posterior by completing this table
(show Your work):

λ
Prior Likelihood Posterior

Mean 4,500 4,858
SD 1,774

[10 points] Extra credit [5 points]: How do the prior and likelihood SDs combine,
at least approximately, to yield the posterior SD? Explain briefly.

(c) Make a plot of the prior, likelihood and posterior distributions on the same graph
(with λ ranging on the horizontal scale from 1,000 to 12,000), identifying which
curve corresponds to which density (You can use the R code on the course web
page for the Inverse Gamma density function, or You can write Your own code
to evaluate the density in equation (4)). In what sense, if any, is the posterior a
compromise between the prior and likelihood? Explain briefly. [15 points]

(d) Compute the observed Fisher information with this data set, and use this to com-
pute an estimated standard error for the MLE and construct an approximate 95%
frequentist confidence interval for λ. Use the qgamma function in R (or some other
numerical integration routine of Your choice) to work out the left and right end-
points of the 95% central posterior interval for λ (Hint: remember the NB in
2(B)(ii)), and compare with the frequentist interval. Give two reasons why they’re
so different in this problem. Is one of them “right” and the other one “wrong’,” or
are they trying to summarize different amounts and types of information, or what?
Explain briefly. [25 points]
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