AMS 206: Quiz 1 [40 total points]

Name: \qquad

Here is Your background information, translatable into \mathcal{B}, for this problem.

- (Fact 1) As a broad generalization (which you can verify empirically), statisticians tend to have shy personalities more often than economists do - let's quantify this observation by assuming that 80% of statisticians are shy but the corresponding percentage among economists is only 15%.
- (Fact 2) Conferences on the topic of econometrics are almost exclusively attended by economists and statisticians, with the majority of participants being economists let's quantify this fact by assuming that 90% of the attendees are economists (and the rest statisticians).

Suppose that you (a physicist, say) go to an econometrics conference - you strike up a conversation with the first person you (haphazardly) meet, and find that this person is shy. The point of this problem is to show that the (conditional) probability p that you're talking to a statistician, given this data and the above background information, is only about 37%, which most people find surprisingly low, and to understand why this is the right answer. Let $S t=($ person is statistician $), E=($ person is economist $)$, and $S h=($ person is shy $)$.
(a) Identify (in the form of a proposition B_{1}, one of the elements of \mathcal{B}) the most important assumption needed in this problem to permit its solution to be probabilistic; expain briefly. [5 points]
(b) Using the $S t, E$ and $S h$ notation, express the three numbers $(80 \%, 15 \%, 90 \%)$ above, and the probability we're solving for, in conditional probability terms, remembering to condition appropriately on \mathcal{B}. [5 points]
(c) Briefly explain why calculating the desired probability is a good job for Bayes's Theorem. [5 points]
(d) Briefly explain why the following expression is a correct use of Bayes's Theorem in odds form in this problem. [5 points]

$$
\begin{align*}
{\left[\frac{P(S t \mid S h, \mathcal{B})}{P(E \mid S h, \mathcal{B})}\right] } & =\left[\frac{P(S t \mid \mathcal{B})}{P(E \mid \mathcal{B})}\right] \cdot\left[\frac{P(S h \mid S t, \mathcal{B})}{P(S h \mid E, \mathcal{B})}\right] \\
(1) & = \tag{3}
\end{align*}
$$

(e) Here are three terms that are relevant to the quantities in part (d) above:

- (Prior odds in favor of $S t$ over E given $\mathcal{B})$
- (Bayes factor in favor of $S t$ over E given the data and $\mathcal{B})$
- (Posterior odds in favor of $S t$ over E given the data and $\mathcal{B})$

Match these three terms with the numbers (1), (2), (3) in the second line of the equation in part (d). [5 points]
(f) Compute the three odds values in part (e), briefly explaining your reasoning, thereby demonstrating that the posterior odds value o in favor of $S t$ over E, given the data and \mathcal{B}, is $o=\frac{16}{27} \doteq 0.593$. [5 points]
(g) Use the expression $p=\frac{o}{1+o}$ to show that the desired probability in this problem the conditional probability that you're talking to a statistician, given the data and the background information - is $p=\frac{16}{43} \doteq 0.372$. [5 points]
(h) Someone says, "That probability can't be right: 80% of statisticians are shy, versus 15% for economists, so your probability of talking to a statistician has to be over 50%." Briefly explain why this line of reasoning is wrong, and why p should indeed be less than 50%. [5 points]

