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2: Exchangeability and Conjugate Modeling

2.1 Probability as quantification of uncertainty

about observables; binary outcomes

Case Study: Hospital-specific prediction of mortality rates. Suppose I’m

interested in measuring the quality of care (e.g., Kahn et al., 1990) offered by

one particular hospital.

I’m thinking of the Dominican Hospital (DH) in Santa Cruz, CA; if this were

Your problem You’d have a different hospital in mind.

As part of this I decide to examine the medical records of all patients treated at

the DH in one particular time window, say January 2006–December 2009,

for one particular medical condition for which there’s a strong process-outcome

link, say acute myocardial infarction (AMI; heart attack).

(Process is what health care providers do on behalf of patients; outcomes are

what happens as a result of that care.)

In the time window I’m interested in there will be about n = 400 AMI

patients at the DH.
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The Meaning of Probability

To keep things simple I’ll ignore process for the moment and focus here on one

particular outcome: death status (mortality) as of 30 days from hospital

admission, coded 1 for dead and 0 for alive.

(In addition to process this will also depend on the sickness at admission of

the AMI patients, but I’ll ignore that initially too.)

From the vantage point of December 2005, say, what may be said about the

roughly 400 1s and 0s I’ll observe in 2006–09?

The meaning of probability. I’m definitely uncertain about the 0–1

death outcomes Y1, . . . , Yn before I observe any of them.

Probability is supposed to be the part of mathematics concerned with

quantifying uncertainty; can probability be used here?

In part 1 I argued that the answer was yes, and that three types of probability

— classical, frequentist, and Bayesian — are available (in principle) to

quantify uncertainty like that encountered here.

The classical approach turns out to be impractical to implement in all but
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2.2 Review of Frequentist Modeling

the simplest problems; I’ll focus here on the frequentist and Bayesian stories.

Frequentist modeling. By definition the frequentist approach is based on

the idea of hypothetical or actual repetitions of the process being studied,

under conditions that are as close to independent identically distributed

(IID) sampling as possible.

When faced with a data set like the 400 1s and 0s (Y1, . . . , Yn) here, the usual

way to do this is to think of it as a random sample, or like a random

sample, from some population that’s of direct interest to me.

Then the randomness in Your probability statements refers to the process of

what You might get if You were to repeat the sampling over and over — the Yi

become random variables whose probability distribution is determined by

this hypothetical repeated sampling.

There are two main flavors of frequentist modeling: confidence intervals

(Neyman) and likelihood inference (Fisher); the diagram on the next

page summarizes the essence of the Neyman frequentist approach.
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The Basic Frequentist Model Diagram

(see sketch presented in class)
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Neyman Frequentist Modeling

On the previous page SD stands for standard deviation, the most common

measure of the extent to which the observations yi in a data set vary, or are

spread out, around the center of the data.

The center is often measured by the mean ȳ = 1
n

∑n

i=1 yi, and the SD of a

sample of size n is then given by

SD =

√√√√ 1

n − 1

n∑

i=1

(yi − ȳ)2. (1)

The population size is denoted by N ; this is often much larger than the

sample size n.

With 0/1 (dichotomous) data, like the mortality outcomes in this case

study, the population mean µ simply records the proportion p of 1s in the

population (check this), and similarly the sample mean ȳ keeps track

automatically of the observed death rate p̂ in the sample.

As N → ∞ the population SD σ with 0/1 data takes on a simple form

(check this):
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Frequentist Probability; Statistical Inference

σ =
√

p(1 − p). (2)

It’s common in frequentist modeling to make a notational distinction

between the random variables Yi (the placeholders for the process of making

IID draws from the population over and over) and the values yi that the Yi

might take on (although I’ll abuse this notation with p̂ below).

In the diagram on page 5 the relationship between the population and

the sample data sets can be usefully considered in each of two directions:

• If the population is known, You can think about how the sample is likely

to come out under IID sampling — this is a probability question.

Here in this case p would be known and You’re trying to figure out the

random behavior of the sample mean Ȳ = p̂.

• If instead only the sample is known, Your job is to infer the likely

composition of the population that could have led to this IID sample —

this is a question of statistical inference.
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The Repeated-Sampling Data Set

In this problem the sample mean ȳ = p̂ would be known and Your job would

be to estimate the population mean p.

Suppose that N >> n, i.e., that even if SRS was used You’re effectively dealing

with IID sampling.

Intuitively both SRS and IID should be “good” — representative —

sampling methods (meaning that the sampled and unsampled elements of

the population should be similar), so that p̂ should be a “good” estimate

of p, but what exactly does the word “good” mean in this sentence?

Evidently a good estimator p̂ would be likely to be close to the truth p,

especially with a lot of data (i.e., if n is large).

In the frequentist approach to inference, quantifying this idea involves

imagining how p̂ would have come out if the process by which the observed

p̂ = 0.18 came to You were repeated under IID conditions.

This gives rise to the repeated-sampling data set, the third part of the

diagram on page 5: we imagine all possible p̂ values based on an IID sample

of size n from a population with 100p% 1s and 100(1 − p)% 0s.
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Expected Value and Standard Error

Let M be the number of hypothetical repetitions in the

repeated-sampling data set.

The long-run mean (as M → ∞) of these imaginary p̂ values is called the

expected value of the random variable p̂, written E(p̂) or EIID(p̂) to

emphasize the mechanism of drawing the sample from the population.

The long-run SD of these imaginary p̂ values is called the standard error of

the random variable p̂, written SE(p̂) or SEIID(p̂).

It’s natural in studying how the hypothetical p̂ values vary around the

center of the repeated-sampling data set to make a histogram of these

values: this is a plot with the possible values of p̂ along the horizontal scale

and the frequencies with which p̂ takes on those values on the vertical scale.

It’s helpful to draw this plot on the density scale, which just means that the

vertical scale is chosen so that the total area under the histogram is 1.

The long-run distribution (histogram) of the imaginary p̂ values on the

density scale is called the (probability) density of the random variable p̂.

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 9



Central Limit Theorem

The values of E(p̂) and SE(p̂), and the basic shape of the density of p̂, can

be determined mathematically (under IID sampling) and verified by

simulation; it turns out that

EIID(p̂) = p and SEIID(p̂) =
σ√
n

=

√
p(1 − p)

n
, (3)

and the density of p̂ for large n is well approximated by the normal curve

or Gaussian distribution (this result is the famous

Central Limit Theorem (CLT)).

Suppose the sample of size n = 400 had 72 1s and 328 0s; then p̂ = 72
400

= 0.18.

Thus You would estimate that the population mortality rate p is around

18%, but how much uncertainty should be attached to this estimate?

The above standard error formula is not directly usable because it involves

the unknown p, but we can estimate the standard error by plugging in p̂:

ŜE(p̂) =

√
p̂ (1 − p̂)

n
=

√
(0.18)(0.82)

400
.
= 0.019. (4)
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Neyman (1923): Confidence Intervals

In other words, we think p is around 18%, give or take about 1.9%.

A probabilistic uncertainty band can be obtained with the frequentist

approach by appeal to the CLT, which says that (for large n) in repeated

sampling p̂ would fluctuate around p like draws from a normal curve with

mean p and SD (SE) 0.019, i.e.,

0.95
.
= PF

[
p − 1.96 ŜE(p̂) ≤ p̂ ≤ p + 1.96 ŜE(p̂)

]

= PF

[
p̂ − 1.96 ŜE(p̂) ≤ p ≤ p̂ + 1.96 ŜE(p̂)

]
. (5)

Thus a 95% (frequentist) confidence interval for p runs from p̂ − 1.96 ŜE(p̂)

to p̂ + 1.96 ŜE(p̂), which in this case is from 0.180 − (1.96)(0.019) = 0.142 to

0.180 + (1.96)(0.019) = 0.218, i.e., we’re “95% confident that p is between

about 14% and 22%”; but what does this mean?

Everybody wants the confidence interval (CI) to mean

PF (0.142 ≤ p ≤ 0.218)
.
= 0.95, (6)
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Meaning of Confidence Intervals; Calibration

but it can’t mean that in the frequentist approach to probability: in that

approach p is treated as a fixed unknown constant, which either is or is not

between 0.142 and 0.218.

So what does it mean?

(see sketch presented in class)

This is a kind of calibration of the CI process: about 95% of the nominal

95% CIs would include the true value, if You were to generate a lot of

them via independent IID samples from the population.
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Random Variable Shorthand

The diagram on page 5 takes up a lot of space; it would be nice to have a

more succinct summary of it.

A random variable Y is said to follow the Bernoulli distribution with

parameter 0 < p < 1 (a parameter is just a fixed unknown constant) —

this is summarized by saying Y ∼ Bernoulli(p) — if Y takes on only the

values 1 and 0 and

P (Y = y) =





p if y = 1

1 − p if y = 0



 = p

y (1 − p)1−y
. (7)

Another popular name for the parameter p in this model is θ .

Evidently what the population and sample parts of the diagram on page 5 are

trying to say, in this notation, is that (Y1, . . . , Yn) are drawn in an IID

fashion from the Bernoulli distribution with parameter θ.

In the usual shorthand, which I’ll use from now on, this is expressed as

Yi
IID∼ Bernoulli(θ), i = 1, . . . , n for some 0 < θ < 1. (8)
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What’s the Population?

This is the frequentist statistical model for the AMI mortality data, except

that we’ve forgotten so far to specify an important ingredient: what’s the

population of patients whose mean (underlying death rate) is θ?

As a frequentist (recall page 4), to use probability to quantify Your

uncertainty about the 1s and 0s, You have to think of them as either literally

a random sample or like a random sample from some population

(hypothetical or actual); what are some possibilities for this population?

• (Fisher: hypothetical) All AMI patients who might have come to the DH

in 2006–09 if the world had turned out differently; or

• Assuming sufficient time-homogeneity in all relevant factors, You could try

to argue that the collection of all 400 AMI patients at the DH from 2006–09 is

like a random sample of size 400 from the population of all AMI patients at the

DH from (say) 2000–2015; or

• Cluster sampling is a way to choose, e.g., patients by taking a random

sample of hospitals and then a random sample of patients nested within

those hospitals; what we actually have here is a kind of cluster sample of all

400 AMI patients from the DH in 2006–2009.
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What’s the Population? (continued)

Cluster samples tend to be less informative than simple random samples (SRSs)

of the same size because of (positive) intracluster correlation (patients in a

given hospital tend to be more similar in their outcomes than would an SRS of

the same size from the population of all the patients in all the hospitals).

Assuming the DH to be representative of some broader collection of hospitals in

California and (unwisely) ignoring intracluster correlation, You could try to

argue that these 400 1s and 0s were like a simple random sample of 400 AMI

patients from this larger collection of hospitals.

None of these options is entirely compelling; but if You’re willing to

pretend the data are like a sample from some population, interest would then

focus on inference about the parameter θ, the “underlying death rate” in this

larger collection of patients to which You feel comfortable generalizing the 400

1s and 0s: if θ were unusually high, that would be prima facie evidence of a

possible quality of care problem.

Suppose (as above) that the frequentist model is

Yi
IID∼ Bernoulli(θ), i = 1, . . . , n for some 0 < θ < 1. (9)
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Fisher Frequentist Modeling

Since the Yi are independent, the joint sampling distribution of all of them,

P (Y1 = y1, . . . , Yn = yn), is the product of the separate, or marginal,

sampling distributions P (Y1 = y1) , . . . , P (Yn = yn):

P (Y1 = y1, . . . , Yn = yn) = P (Y1 = y1) · · ·P (Yn = yn)

=

n∏

i=1

P (Yi = yi) . (10)

But since the Yi are also identically distributed, and each one is Bernoulli(θ),

i.e., P (Yi = yi) = θyi (1 − θ)1−yi , the joint sampling distribution can be written

P (Y1 = y1, . . . , Yn = yn) =

n∏

i=1

θ
yi (1 − θ)1−yi . (11)

Let’s use the symbol y to stand for the vector of observed data values

(y1, . . . , yn).

Before any data have arrived, this joint sampling distribution is a function of y

for fixed θ — it tells You how the data would be likely to behave in the

future if You were to take an IID sample from the Bernoulli(θ) distribution.
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The Likelihood Function

In 1921 Fisher had the following idea (Laplace (1774) had it first): after the

data have arrived it makes more sense to interpret (11) as a function of θ for

fixed y — this is the likelihood function for θ in the Bernoulli(θ) model:

l(θ|y) = l(θ|y1, . . . , yn) =

n∏

i=1

θ
yi (1 − θ)1−yi (12)

= P (Y1 = y1, . . . , Yn = yn) but interpreted

as a function of θ for fixed y.

Fisher tried to create a theory of inference about θ based only on this

function — this turns out to be an important ingredient, but not the only

important ingredient, in inference from the Bayesian viewpoint.

The Bernoulli(θ) likelihood function can be simplified as follows:

l(θ|y) = θ
s(1 − θ)n−s

, (13)

where s =
∑n

i=1 yi is the number of 1s in the sample and (n − s) is the

number of 0s.
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The Likelihood Function (continued)

What does this function look like, e.g., with n = 400 and s = 72 (this is

similar to data You would get from the DH: a 30-day mortality rate from

AMI of 18%)?
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This looks a lot like a Gaussian distribution (not yet density-normalized) for

θ, which is the Bayesian way to interpret the likelihood function (see below).
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Likelihood and Log Likelihood

Note that the likelihood function l(θ|y) = θs(1 − θ)n−s in this problem

depends on the data vector y only through s =
∑n

i=1 yi — Fisher referred

to any such data summary as a sufficient statistic (with respect to the

assumed sampling model).

It’s often at least as useful to look at the logarithm of the likelihood function

as the likelihood function itself:
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In this case, as is often true for large n, the log likelihood function looks

locally quadratic around its maximum (why?).
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Maximizing the Likelihood Function

Fisher had the further idea that the maximum of the likelihood function

would be a good estimate of θ (we’ll look later at conditions under which this

makes sense from the Bayesian viewpoint).

Since the logarithm function is monotone increasing, it’s equivalent in

maximizing the likelihood to maximize the log likelihood, and for a

function as well behaved as this You can do that by setting its first partial

derivative with respect to θ to 0 and solving; here You get the familiar result

θ̂MLE =
s

n
= ȳ.

The function of the data that maximizes the likelihood (or log likelihood)

function is the maximum likelihood estimate (MLE) θ̂MLE.

Note also that if You maximize l(θ|y) and I maximize c l(θ|y) for any constant

c > 0, we’ll get the same thing, i.e., the likelihood function is only defined up

to a positive multiple; Fisher’s actual definition was

l(θ|y) = c P (Y1 = y1, . . . , Yn = yn) for any (normalizing constant) c > 0.
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Calibrating the MLE

From now on c in expressions like the likelihood function above will be a

generic (and often unspecified) positive constant.

Maximum likelihood provides a basic principle for estimation of a

(population) parameter θ from the frequentist/likelihood point of view, but how

should the accuracy of θ̂MLE be assessed?

Evidently in the frequentist approach You want to compute the variance or

standard error of θ̂MLE in repeated sampling, or estimated versions of these

quantities — I’ll focus on the estimated variance V̂
(
θ̂MLE

)
=
[
ŜE
(
θ̂MLE

)]2
.

Fisher (1922) also proposed an approximation to V̂
(
θ̂MLE

)
that works well

for large n and makes good intuitive sense.

In the AMI mortality case study, where θ̂MLE = θ̂ = s
n

(the sample mean),

it’s easy to show that

V
(
θ̂MLE

)
=

θ(1 − θ)

n
and V̂

(
θ̂MLE

)
=

θ̂(1 − θ̂)

n
, (14)

but Fisher wanted to derive results like this in a more basic and general way.
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Examining the Log Likelihood Function

Imagine quadrupling the sample size in this case study from n = 400 to

n = 1600 while keeping the observed death rate constant at 0.18 — what would

happen to the log likelihood function?

To answer this question, recall (page 20) that as far as maximizing the

likelihood function is concerned it’s equally good to work with any (positive)

constant multiple of it, which is equivalent to saying that we can add any

constant we want to the log likelihood function without harming anything.

In the Maple plot below I’ve added a different constant to each of the log

likelihood functions with (s, n) = (72, 400) and (288, 1600) so that they both go

through the point (θ̂MLE, 0):

sauternes 235> maple

|\^/| Maple 9.5 (SUN SPARC SOLARIS)

._|\| |/|_. Copyright (c) Maplesoft, Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.
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Examining the Log Likelihood Function (continued)

> ll := ( theta, s, n ) -> s * log( theta ) + ( n - s ) * log( 1 - theta );

> plotsetup( x11 );

> plot( { ll( theta, 72, 400 ) - evalf( ll( 72 / 400, 72, 400 ) ),

ll( theta, 288, 1600 ) - evalf( ll( 288 / 1600, 288, 1600 ) ) },

theta = 0.12 .. 0.25, color = black );
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–15

–10

–5

0
0.14 0.16 0.18 0.2 0.22 0.24

theta
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Fisher Information

Notice that what’s happened as n went from 400 to 1600 while holding the

MLE constant at 18% mortality is that the second derivative of the log

likelihood function at θ̂MLE (a negative number) has increased in size.

This led Fisher to define a quantity he called the information in the sample

about θ — in his honor it’s now called the (observed) Fisher information:

Î
(
θ̂MLE

)
=

[
− ∂2

∂θ2
log l(θ|y)

]

θ=θ̂MLE

. (15)

This quantity increases as n goes up, whereas our uncertainty about θ based

on the sample, as measured by V̂
(
θ̂MLE

)
, should go down with n.

Fisher conjectured and proved that the information and the estimated variance

of the MLE in repeated sampling have the following simple inverse

relationship when n is large:

V̂
(
θ̂MLE

)
.
= Î

−1
(
θ̂MLE

)
. (16)
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Likelihood-Based Large-Sample Confidence Intervals

In this case study the Fisher information and repeated-sampling

variance come out

Î
(
θ̂MLE

)
=

n

θ̂(1 − θ̂)
and V̂

(
θ̂MLE

)
=

θ̂(1 − θ̂)

n
, (17)

(check this) which matches what You already know is correct in this case.

Fisher further proved that for large n (a) the MLE is approximately unbiased,

meaning that in repeated sampling

E
(
θ̂MLE

)
.
= θ, (18)

and (b) the sampling distribution of the MLE is approximately Gaussian with

mean θ and estimated variance given by (16):

θ̂MLE

·∼ Gaussian
[
θ, Î

−1
(
θ̂MLE

)]
. (19)

Thus for large n an approximate 95% confidence interval for θ is given by

θ̂MLE ± 1.96

√
Î−1

(
θ̂MLE

)
.

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 25



Fisher Information Computation

You can differentiate to compute the Fisher information Yourself in the AMI

mortality case study, or You can use Maple to do it for You:

> score := ( theta, s, n ) -> simplify( diff( ll( theta, s, n ), theta ) );

score := (theta, s, n) -> simplify(diff(ll(theta, s, n), theta))

> score( theta, s, n );

s - n theta

- ------------------

theta (-1 + theta)

> plot( score( theta, 72, 400 ), theta = 0.12 .. 0.25 );
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Fisher Information Computation (continued)

> diff2 := ( theta, s, n ) -> simplify( diff( score( theta, s, n ),

theta ) );

diff2 := (theta, s, n) -> simplify(diff(score(theta, s, n), theta))

> diff2( theta, s, n );

2

-n theta - s + 2 s theta

-------------------------

2 2

theta (-1 + theta)

> information := ( s, n ) -> simplify( eval( - diff2( theta, s, n ),

theta = s / n ) );

> information( s, n );

3

n

- ----------

s (-n + s)
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Fisher Information Computation (continued)

> variance := ( s, n ) -> 1 / information( s, n );

1

variance := (s, n) -> -----------------

information(s, n)

> variance( s, n );

s (-n + s)

- ----------

3

n

This expression can be further simplified to yield

V̂
(
θ̂MLE

)
.
=

s
n

(
1 − s

n

)

n
=

θ̂(1 − θ̂)

n
, (20)

which coincides with (17).
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Repeated-Sampling Asymptotic Optimality of MLE

In the above expression for Fisher information in this problem,

Î
(
θ̂MLE

)
=

n

θ̂(1 − θ̂)
,

as n increases, θ̂(1 − θ̂) will tend to the constant θ(1 − θ) (this is well-defined

because we’ve assumed that 0 < θ < 1, since θ = 0 and 1 are probabilistically

uninteresting), which means that information about θ on the basis of

(y1, . . . , yn) in the IID Bernoulli model increases at a rate proportional to

n as the sample size grows.

This is generally true of the MLE (i.e., in regular parametric problems):

Î
(
θ̂MLE

)
= O(n) and V̂

(
θ̂MLE

)
= O

(
n
−1)

, (21)

as n → ∞, where the notation an = O(bn) (as usual) means that the ratio
∣∣∣an

bn

∣∣∣
is bounded as n grows.

Thus uncertainty about θ on the basis of the MLE goes down like cMLE

n
on

the variance scale with more and more data (in fact Fisher showed that cMLE

achieves the lowest possible value: the MLE is efficient).
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Bayesian Modeling

As a Bayesian in this situation, my job is to quantify my uncertainty about the

400 binary observables I’ll get to see starting in 2006, i.e., my initial modeling

task is predictive rather than inferential.

There is no samples-and-populations story in this approach, but probability

and random variables arise in a different way: quantifying my uncertainty (for

the purpose of betting with someone about some aspect of the 1s and 0s, say)

requires eliciting from myself a joint predictive distribution that accurately

captures my judgments about what I’ll see: PB:me(Y1 = y1, . . . , Yn = yn) .

Notice that in the frequentist approach the random variables describe the

process of observing a repeatable event (the “random sampling” appealed to

here), whereas in the Bayesian approach You use random variables to quantify

my uncertainty about observables You haven’t seen yet.

I’ll argue later that the concept of probabilistic accuracy has two components:

You want Your uncertainty assessments to be both internally and externally

consistent, which corresponds to the Bayesian and frequentist ideas of

coherence/logical consistency and calibration, respectively.
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Exchangeability

2.3 Exchangeability as a Bayesian concept

parallel to frequentist independence

Eliciting a 400-dimensional distribution doesn’t sound easy; major

simplification is evidently needed.

In this case, and many others, this is provided by

exchangeability considerations.

If (as in the frequentist approach) You have no relevant information that

distinguishes one AMI patient from another, Your uncertainty about the 400 1s

and 0s is symmetric, in the sense that a random permutation of the order in

which the 1s and 0s were labeled from 1 to 400 would leave Your uncertainty

about them unchanged.

de Finetti (1930, 1964) called random variables with this

property exchangeable:

{Yi, i = 1, . . . , n} are exchangeable if the distri-

butions of (Y1, . . . , Yn) and (Yπ(1), . . . , Yπ(n)) are

the same for all permutations (π(1), . . . , π(n)).
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Exchangeability (continued)

NB Exchangeability and IID are not the same: IID implies

exchangeability, and exchangeable Yi do have identical marginal distributions,

but they’re not independent (if You’re expecting a priori about 15% 1s, say

(that’s the 30-day death rate for AMI with average-quality care), the knowledge

that in the first 50 outcomes at the DH 20 of them were deaths would certainly

change Your prediction of the 51st).

de Finetti also defined partial or conditional exchangeability (e.g., Draper

et al., 1993): if, e.g., the gender X of the AMI patients were available, and if

there were evidence from the medical literature that 1s tended to be noticeably

more likely for men than women, then You would probably want to assume

conditional exchangeability of the Yi given X (meaning that the male and

female 1s and 0s, viewed as separate collections of random variables, are each

unconditionally exchangeable).

This is related to Fisher’s (1956) idea of recognizable subpopulations.

The judgment of exchangeability still seems to leave the joint distribution of

the Yi quite imprecisely specified.
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de Finetti’s Theorem For Binary Outcomes

After defining the concept of exchangeability, however, de Finetti went on to

prove a remarkable result: if You’re willing to regard the {Yi, i = 1, . . . , n}
as part (for instance, the beginning) of an infinite exchangeable sequence of 1s

and 0s (meaning that every finite subsequence is exchangeable), then there’s a

simple way to characterize Your joint predictive distribution, if it’s to be

coherent (e.g., de Finetti, 1975; Bernardo and Smith, 1994).

(Finite versions of the theorem have since been proven, which say that the

longer the exchangeable sequence into which You’re willing to embed

{Yi, i = 1, . . . , n}, the harder it becomes to achieve coherence/logical

consistency with any probability specification that’s far removed from the one

below.)

de Finetti’s Representation Theorem. If You’re willing to regard

(Y1, . . . , Yn) as the first n terms in an infinitely exchangeable binary sequence

(Y1, Y2, . . . ); then, with Ȳn = 1
n

∑n

i=1 Yi,

• θ = limn→∞ Ȳn must exist, and the marginal distribution (given θ) for

each of the Yi must be P (Yi = yi|θ) = Bernoulli(yi|θ) = θyi(1 − θ)1−yi ,
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de Finetti’s Theorem (continued)

where P is my joint probability distribution on (Y1, Y2, . . . );

• H(t) = limn→∞ P (Ȳn ≤ t), the limiting cumulative distribution

function (CDF) of the Ȳn values, must also exist for all t and must be a

valid CDF, and

• P (Y1, . . . , Yn) can be expressed as

P (Y1 = y1, . . . , Yn = yn) =

∫ 1

0

n∏

i=1

θ
yi(1 − θ)1−yi dH(θ). (22)

When (as will essentially always be the case in realistic applications) my joint

distribution P is sufficiently regular that H possesses a density (with respect

to Lebesgue measure), dH(θ) = p(θ) dθ, (22) can be written in a more

accessible way as

P (Y1 = y1, . . . , Yn = yn) =

∫ 1

0

θ
s(1 − θ)n−s

p(θ) dθ, (23)

where s =
∑n

i=1 yi = n ȳn.
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Generalizing Outward from the Observables

Important digression 1. Some awkwardness arose above in the

frequentist approach to modeling the AMI mortality data, because it was not

clear what population P the data could be regarded as

like a random sample from.

This awkwardness also arises in Bayesian modeling: even though in practice

You’re only going to observe (y1, . . . , yn), de Finetti’s representation theorem

requires You to extend Your judgment of finite exchangeability to the

countably-infinite collective (y1, y2, . . . ),

→ and this is precisely like viewing (y1, . . . , yn) as a random sample

from P = (y1, y2, . . . ).

The key point is that the difficulty arising from lack of clarity about the

scope of valid generalizability from a given set of observational data is a

fundamental scientific problem that emerges whenever purely

observational data are viewed through an inferential or predictive lens,

whether the statistical methods You use are frequentist or Bayesian.
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The Law of Total Probability

Important digression 2. It’s a general fact about true-false propositions

D and A that

P (D) = P (D and A) + P [D and (not A)] (24)

= P (A) P (D|A) + P (not A) P (D|not A).

This is a special case of the Law of Total Probability (LTP).

A and (not A) divide, or partition, the collection of all possible outcomes into

two non-overlapping (mutually exclusive) and exhaustive possibilities.

Let A1, . . . , Ak be any finite partition, i.e., P (Ai and Aj) = 0 (mutually

exclusive) and
∑k

i=1 P (Ai) = 1 (exhaustive); then a more general version of

the LTP gives that

P (D) = P (D and A1) + . . . + P (D and Ak)

= P (A1) P (D|A1) + . . . + P (Ak)P (D|Ak) (25)

=

k∑

i=1

P (Ai)P (D|Ai).
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Hierarchical (Mixture) Modeling

There is a continuous version of the LTP: by analogy with (25), if X and Y

are real-valued random variables

p(y) =

∫ ∞

−∞

p(x) p(y|x) dx. (26)

p(x) in this expression can be thought of as a mixing distribution.

Intuitively (26) says that the overall probability behavior p(y) of Y is a mixture

(weighted average) of the conditional behavior p(y|x) of Y given X, weighted

by the behavior p(x) of X.

Another way to put this is to say that You have a choice: You can either model

the random behavior of Y directly, through p(y), or hierarchically, by first

modeling the random behavior of X, through p(x), and then modeling the

conditional behavior of Y given X, through p(y|x).

Notice that X and Y are completely general in this discussion — in other

words, given any quantity Y that You want to model stochastically, You’re free

to choose any X (upon which Y depends) and model Y hierarchically given

X instead, if that’s easier.
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Hierarchical (Mixture) Modeling (continued)

Symbolically

Y ↔





X

Y |X



 . (27)

The reason for bringing all of this up now is that (23) can be interpreted as

follows, with θ playing the role of x:

p(y1, . . . , yn) =

∫ 1

0

p(y1, . . . , yn|θ) p(θ) dθ

=

∫ 1

0

θ
s(1 − θ)n−s

p(θ) dθ. (28)

(28) implies that in any coherent/logically consistent expression of

uncertainty about exchangeable binary quantities Y1, . . . , Yn,

p(y1, . . . , yn|θ) = θ
s(1 − θ)n−s

. (29)

But (a) the left side of (29), interpreted as a function of θ for fixed

y = (y1, . . . , yn), is recognizable as the likelihood function for θ given y,

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 38



The Simplest Mixture (Hierarchical) Model

(b) the right side of (29) is recognizable as the likelihood function for θ in IID

Bernoulli sampling, and (c) (29) says that these must be the same.

Thus, to summarize de Finetti’s Theorem intuitively, the assumption of

exchangeability in my uncertainty about binary observables Y1, . . . , Yn amounts

to behaving as if

• there is a quantity called θ, interpretable as either the long-run relative

frequency of 1s or the marginal probability that any of the Yi is 1,

• You need to treat θ as a random quantity with density p(θ), and

• conditional on this θ the Yi are IID Bernoulli(θ).

In yet other words, for a Bayesian whose uncertainty about binary Yi is

exchangeable, the model may effectively be taken to have the simple mixture

or hierarchical representation




θ ∼ p(θ)

(Yi|θ) IID∼ Bernoulli(θ), i = 1, . . . , n



 . (30)
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Exchangeability and Conditional Independence

This is the link between frequentist and Bayesian modeling of binary outcomes:

exchangeability implies that You should behave like a frequentist vis à vis the

likelihood function (taking the Yi to be IID Bernoulli(θ)), but a frequentist

who treats θ as a random variable with a mixing distribution p(θ).

NB This is the first example of a general fact:

Yi exchangeable ↔





Yi conditionally IID

given one or more parameters



 . (31)

So exchangeability is a special kind of conditional independence: binary

exchangeable yi are not independent, but they become conditionally

independent given θ.

(30) is an example of the simplest kind of hierarchical model (HM): a

model at the top level for the underlying death rate θ, and then a model below

that for the binary mortality indicators Yi conditional on θ (this is a basic

instance of (27): it’s not easy to model the predictive distribution for

(Y1, . . . , Yn) directly, but it becomes a lot easier when θ is introduced at the

top level of a 2–level hierarchy).
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Mixing Distribution = Prior Distribution

To emphasize an important point mentioned above, to make sense of this in the

Bayesian approach You have to treat θ as a random variable, even though

logically it’s a fixed unknown constant.

This is the main conceptual difference between the Bayesian and frequentist

approaches: as a Bayesian You use the machinery of random variables to

express Your uncertainty about unknown quantities.

Approach Fixed Random

Frequentist θ Y

Bayesian y θ

2.4 Prior, posterior, and predictive distributions

What’s the meaning of the mixing distribution p(θ)?

p(θ) doesn’t involve y = (y1, . . . , yn), so it must represent my information

about θ external to the data set y — as noted in Part 1, it has become

traditional to call it my prior distribution for θ (I’ll address how You might

go about specifying this distribution below).
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Bayes’s Theorem

Q: If p(θ) represents my information external to θ, what represents this

information after y has been observed?

A: It has to be p(θ|y), the conditional distribution for θ given how y came out.

It’s conventional (again appealing to terms involving time) to call this the

posterior distribution for θ given y.

Q: How do You get from p(θ) to p(θ|y), i.e., how do You update Your

information about θ in light of the data?

A: Bayes’s Theorem for continuous quantities:

p(θ|y) =
p(θ) p(y|θ)

p(y)
. (32)

This requires some interpreting. As a Bayesian You’re conditioning on the

data, i.e., You’re thinking of the left-hand side of (32) as a function of θ for

fixed y, so that must also be true of the right-hand side; thus

(a) p(y) is just a constant — in fact, You can think of it as the normalizing

constant, put into the equation to make the product p(θ) p(y|θ) integrate to 1;
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Predictive Distributions

and (b) p(y|θ) may look like the usual frequentist sampling distribution for y

given θ (Bernoulli, in this case), but You have to think of it as a function of θ

for fixed y.

We’ve already encountered this idea (page 17): l(θ|y) = c p(y|θ) is the

likelihood function.

So Bayes’s Theorem becomes

p(θ|y) = c · p(θ) · l(θ|y) (33)

posterior =


 normalizing

constant


 · prior · likelihood .

You can also readily construct predictive distributions for the yi before

they’re observed, or for future yi once some of them are known.

For example, by the LTP, the posterior predictive distribution for

(ym+1, . . . , yn) given (y1, . . . , ym) is
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Predictive Distributions (continued)

p(ym+1, . . . , yn|y1, . . . , ym) = (34)
∫ 1

0

p(ym+1, . . . , yn|θ, y1, . . . , ym) p(θ|y1, . . . , ym) dθ.

Consider p(ym+1, . . . , yn|θ, y1, . . . , ym): if You knew θ, the information

y1, . . . , ym about how the first m of the yi came out would be irrelevant

(imagine predicting the results of IID coin-tossing: if You somehow knew that

the coin was perfectly fair, i.e., that θ = 0.5, then getting (say) 6 heads in the

first 10 tosses would be useless to You in quantifying the likely behavior of the

next (say) 20 tosses — You’d just use the known true value of θ).

Thus p(ym+1, . . . , yn|θ, y1, . . . , ym) is just p(ym+1, . . . , yn|θ), which in turn is

just the sampling distribution under IID B(θ) sampling for the binary

observables ym+1, . . . , yn, namely
∏n

i=m+1 θyi(1 − θ)1−yi .

And finally p(θ|y1, . . . , ym) is recognizable as just the posterior distribution

for θ given the first m of the binary outcomes.

Putting this all together gives
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2.5 Inference and Prediction; Coherence and Calibration

p(ym+1, . . . , yn|y1, . . . , ym) = (35)

=

∫ 1

0

n∏

i=m+1

θ
yi(1 − θ)1−yi p(θ|y1, . . . , ym) dθ

(we can’t compute (35) yet because p(θ|y1, . . . , ym) depends on p(θ), which we

haven’t specified so far).

This also brings up a key difference between a parameter like θ on the one

hand and the Yi, before You’ve observed any data, on the other: parameters are

inherently unobservable.

This makes it harder to evaluate the quality of my uncertainty assessments

about θ than to do so about the observable yi: to see how well You’re doing in

predicting observables You can just compare Your predictive distributions for

them with how they actually turn out, but of course this isn’t possible with

parameters like θ that You’ll never actually see.

The de Finetti approach to modeling emphasizes the prediction of observables

as a valuable adjunct to inference about unobservable parameters, for at least

two reasons:
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The Value of Predictive Thinking

• Key scientific questions are often predictive in nature: e.g., rather than

asking “Is drug A better than B (on average across many patients) for

lowering blood pressure?” (inference) the ultimate question is “How much

more will drug A lower this patient’s blood pressure than drug B?”

(prediction); and

• Good diagnostic checking is predictive: An inference about an

unobservable parameter can never be directly verified, but often You can

reasonably conclude that inferences about the parameters of a model that

produces poor predictions of observables are also suspect.

With the predictive approach parameters diminish in importance, especially

those that have no physical meaning — such parameters (unlike θ above) are

just place-holders for a particular kind of uncertainty on my way to

making good predictions.

It’s arguable (e.g., Draper, 1995) that the discipline of statistics, and

particularly its applications in the social sciences, would be improved by a

greater emphasis on predictive feedback.
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Where Does the Prior Come From?

This is not to say that parametric thinking should be abolished.

As the calculations on the previous pages emphasized, parameters play an

important simplifying role in forming modeling judgments: the single strongest

simplifier of a joint distribution is independence of its components, and

whereas, e.g., in the mortality example the Yi are not themselves independent,

they become so conditional on θ.

de Finetti’s Theorem for 0–1 outcomes says informally that if You’re trying to

make coherent/logically consistent probability judgments about a series of

1s and 0s that You judge exchangeable, You may as well behave like a

frequentist — IID Bernoulli(θ) — with a prior distribution p(θ); but where

does the prior come from?

NB Coherence/logical consistency doesn’t help in answering this

question — it turns out that any prior p(θ) could be part of somebody’s

coherent/logically consistent probability judgments.

Some people regard the need to answer this question in the Bayesian approach

as a drawback, but it seems to me to be a positive feature, as follows.
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Predictive Calibration

From Bayes’s Theorem the prior is supposed to be a summary of what You

know (and don’t know) about θ external to the data set (y1, . . . , yn): from

previous datasets of which You’re aware, from the relevant literature, from

expert opinion, ... from all “good” source(s), if any exist.

Such information is almost always present, and should presumably

be used when available; the issue is how to do so “well.”

The goal is evidently to choose a prior that You’ll retrospec-

tively be proud of, in the sense that Your predictive distri-

butions for the observables (a) are well-centered near the actual

values and (b) have uncertainty bands that correspond well to

the realized discrepancies between actual and predicted values;

this is a form of calibration of Your probability assessments.

There is no guaranteed way to do this, just as there is no guaranteed way

to arrive at a “good” frequentist model (see “Where does the likelihood come

from?” below).

Some general comments on arriving at a “good” prior:
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Choosing a “Good” Prior

• There is a growing literature on methodology for elicitation of prior

information (e.g., Kadane et al., 1980; Craig et al., 1997; Kadane and

Wolfson, 1997; O’Hagan, 1997), which brings together ideas from statistics

and perceptual psychology (e.g., people turn out to be better at estimating

percentiles of a distribution than they are at estimating standard

deviations (SDs)).

• Bayes’s Theorem on the log scale says (apart from the normalizing

constant)

log(posterior) = log(prior) + log(likelihood), (36)

i.e., (posterior information) = (data information) + (prior information).

This means that close attention should be paid to the information

content of the prior by, e.g., density-normalizing the likelihood and

plotting it on the same scale as the prior: it’s possible for small n for the

prior to swamp the data, and in general You shouldn’t let this happen

without a good reason for doing so.

Comfort can also be taken from the other side of this coin: with large n (in
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Prior Specification (continued)

many situations, at least) the data will swamp the prior, and

specification errors become less important.

• When You notice You’re quite uncertain about how to specify the prior,

You can try sensitivity or pre-posterior analysis: exploring the

mapping from prior to posterior, before the data are gathered, by (a)

generating some possible values for the observables, (b) writing down

several plausible forms for the prior, and (c) carrying these forward to

posterior distributions — if the resulting distributions are similar (i.e., if

“all reasonable roads lead to Rome”), You’ve uncovered a useful form of

stability in Your results; if not You can try to capture the prior uncertainty

hierarchically, by, e.g., adding another layer to a model like (30) above.

• Calibration can be estimated by a form of cross-validation: with a given

prior You can (a) repeatedly divide the data at random into modeling and

validation subsets, (b) update to posterior predictive distributions based on

the modeling data, and (c) compare these distributions with the actual

values in the validation data.
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Conjugate Analysis

Note that calibration is inherently frequentist in spirit (e.g., “What

percentage of the time do my 95% predictive intervals include the

actual value?”).

This leads to a useful synthesis of Bayesian and frequentist thinking:

Coherence/logical consistency keeps me internally honest; calibra-

tion keeps me in good contact with the world.

2.6 Conjugate analysis; comparison with frequentist modeling

Example: Prior specification in the AMI mortality case study. Let’s say

(a) I know (from the literature) that the 30-day AMI mortality rate given

average care and average sickness at admission in the U.S. is about 15%,

(b) I know little about care or patient sickness at the DH, but

(c) I’d be somewhat surprised if the “underlying rate” at the DH was much less

than 5% or more than 30% (note the asymmetry).

To quantify these judgments I seek a flexible family of densities on (0, 1),
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The Beta Family of Densities on (0, 1)

one of whose members has mean 0.15 and (say)

95% central interval (0.05,0.30).

A convenient family for this purpose is the Beta distributions,

Beta(θ|α, β) = c θ
α−1(1 − θ)β−1

, (37)

defined for (α > 0, β > 0) and for 0 < θ < 1.

We can use Maple to evaluate the normalizing constant c.

sauternes 189> maple

|\^/| Maple 9.5 (SUN SPARC SOLARIS)

._|\| |/|_. Copyright (c) Maplesoft, Waterloo Maple Inc. 2004

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> assume( alpha > 0, beta > 0, theta > 0, theta < 1 );

> p1 := ( theta, alpha, beta ) -> theta^( alpha - 1 ) *

( 1 - theta )^( beta - 1 );
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The Beta Distribution

(alpha - 1) (beta - 1)

p1 := (theta, alpha, beta) -> theta (1 - theta)

> integrate( p1( theta, alpha, beta ), theta = 0 .. 1 );

Beta(alpha~, beta~)

> help( Beta );

Beta - The Beta function

Calling Sequence:

Beta( x, y )

Parameters:

x - an expression

y - an expression

Description:

- The Beta function is defined as follows:

Beta( x, y ) = ( GAMMA( x ) * GAMMA( y ) ) / GAMMA( x + y )

> help( GAMMA );

GAMMA - The Gamma and Incomplete Gamma Functions

lnGAMMA - The log-Gamma function
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The Beta Distribution (continued)

Calling Sequence:

GAMMA( z )

GAMMA( a, z )

lnGAMMA( z )

Parameters:

z - an expression

a - an expression

Description:

- The Gamma function is defined for Re( z ) > 0 by

GAMMA(z) = int( exp( -t ) * t^( z - 1 ), t = 0 .. infinity )

and is extended to the rest of the complex plane,

less the non-positive integers, by analytic continuation.

GAMMA has a simple pole at each of the points z = 0, -1, -2, ... .

- For positive real arguments z, the lnGAMMA function is defined by:

lnGAMMA( z ) = ln( GAMMA( z ) )

> plotsetup( x11 );

> plot( GAMMA( x ), x = 0 .. 5, color = black );
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The Beta Distribution (continued)
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It turns out that Γ(1) = 1, Γ(2) = 1, Γ(3) = 2,Γ(4) = 6, and Γ(5) = 24 — the

pattern here is that

Γ(n) = (n − 1)! for integer n. (38)

Thus the Gamma function is a kind of continuous generalization of the

factorial function.

What all of this has shown is that the normalizing constant in the Beta

distribution is

c =

[∫ 1

0

θ
α−1 (1 − θ)β−1

dθ

]−1

=
Γ(α + β)

Γ(α) Γ(β)
, (39)
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The Beta Distribution (continued)

so that the full definition of the Beta distribution is

Beta(θ|α, β) =
Γ(α + β)

Γ(α) Γ(β)
θ

α−1(1 − θ)β−1
, (40)

for (α > 0, β > 0) and for 0 < θ < 1.

The Beta family is convenient for two reasons: (1) It exhibits a wide variety

of distributional shapes:
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Conjugate Analysis

(2) As we saw above, the likelihood in this problem comes from the Bernoulli

sampling distribution for the Yi,

p(y1, . . . , yn|θ) = l(θ|y) = θ
s(1 − θ)n−s

, (41)

where s is the sum of the yi.

Now Bayes’s Theorem says that to get the posterior distribution p(θ|y) You

multiply the prior p(θ) and the likelihood — in this case θs(1 − θ)n−s — and

renormalize so that the product integrates to 1.

Rev. Bayes himself noticed back in the 1750s that if the prior is taken to be of

the form c θu (1 − θ)v, the product of the prior and the likelihood will also be

of this form, which makes the computations more straightforward.

The Beta family is said to be conjugate to the Bernoulli/Binomial likelihood.

Conjugacy of a family of prior distributions to a given likelihood is a bit

hard to define precisely, but the basic idea — given a particular likelihood

function — is to try to find a family of prior distributions so that the product

of members of this family with the likelihood function will also be in the family.
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The Beta Family (continued)

Conjugate analysis — finding conjugate priors for standard likelihoods and

restricting attention to them on tractability grounds — is one of only two fairly

general methods for getting closed-form answers in the Bayesian approach (the

other is asymptotic analysis; see, e.g., Bernardo and Smith, 1994).

Suppose I restrict attention (for now) to members of the Beta family in trying

to specify a prior distribution for θ in the AMI mortality example.

I want a member of this family that has mean 0.15 and 95% central

interval (0.05, 0.30).

> mean := integrate( theta * p( theta, alpha, beta ), theta = 0 .. 1 );

alpha~

mean := --------------

alpha~ + beta~

> variance := simplify( integrate( ( theta - alpha /

( alpha + beta ) )^2 * p( theta, alpha, beta ), theta = 0 .. 1 ) );
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Conjugate Analysis (continued)

alpha~ beta~

variance := --------------------------------------

2

(alpha~ + beta~) (alpha~ + beta~ + 1)

As Maple has demonstrated, if θ ∼ Beta(α, β)

E(θ) =
α

α + β
and V (θ) =

αβ

(α + β)2(α + β + 1)
. (42)

> solve( mean = 15 / 100, beta );

17/3 alpha~

> solve( integrate( p( theta, alpha, 17 * alpha / 3 ),

theta = 0.05 .. 0.30 ) = 0.95, alpha );

bytes used=3005456, alloc=1834672, time=0.82

bytes used=4006628, alloc=2293340, time=1.18

bytes used=5007408, alloc=2489912, time=1.58

>
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Conjugate Analysis (continued)

Maple can’t solve this equation symbolically (and neither could you), but it

can do so numerically; note how easy this is to do in Maple, by replacing

solve with fsolve:

> fsolve( integrate( p( theta, alpha, 17 * alpha / 3 ),

theta = 0.05 .. 0.30 ) = 0.95, alpha );

bytes used=7083468, alloc=2686484, time=2.50

(output suppressed)

bytes used=27099104, alloc=3538296, time=11.99

4.506062414

> 17 * 4.506062414 / 3;

25.53435368
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Conjugate Analysis (continued)

Thus the Beta distribution with (α, β) = (4.5, 25.5) meets my two prior

specifications; it can readily be plotted in Maple or R (my choice here):
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This prior distribution looks just like I want it to: it has a long right-hand

tail and is quite spread out: the prior SD with this choice of (α, β) is√
(4.5)(25.5)

(4.5+25.5)2(4.5+25.5+1)

.
= 0.064, i.e., my prior says that I think the underlying

AMI mortality rate at the DH is around 15%, give or take about 6 or 7%.
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Hierarchical Model Expansion

In the usual jargon α and β are called hyperparameters since they’re

parameters of the prior distribution.

Written hierarchically the model we’ve arrived at is

(α, β) = (4.5, 25.5) (hyperparameters)

(θ|α, β) ∼ Beta(α, β) (prior) (43)

(Y1, . . . , Yn|θ) IID∼ Bernoulli(θ) (likelihood)

(43) suggests what to do if You’re not sure about the specifications that led to

(α, β) = (4.5, 25.5): hierarchically expand the model by placing a

distribution on (α, β) centered at (4.5, 25.5).

This is an important Bayesian modeling tool: if the model is inadequate in

some way, expand it hierarchically in directions suggested by the nature of

its inadequacy (I’ll give more examples of this later).

Q: Doesn’t this set up the possibility of an infinite regress, i.e., how do You

know when to stop adding layers to the hierarchy?
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Conjugate Updating

A: (1) In practice people stop when they run out of (time, money), after

having made sure that the final model passes diagnostic checks; and comfort

may be taken from the empirical fact that (2) there tends to be a kind of

diminishing returns principle: the farther a given layer in the hierarchy is

from the likelihood (data) layer, the less it tends to affect the answer.

The conjugacy of the prior leads to a simple closed form for the posterior

here: with y as the vector of observed Yi, i = 1, . . . , n and s as the sum of the

yi (a sufficient statistic for θ, as noted above, with the Bernoulli likelihood),

p(θ|y, α, β) = c l(θ|y) p(θ|α, β)

= c θ
s (1 − θ)n−s

θ
α−1(1 − θ)β−1 (44)

= c θ
(s+α)−1(1 − θ)(n−s+β)−1

,

i.e., the posterior for θ is Beta(α + s, β + n − s).

This gives the hyperparameters a useful interpretation in terms of effective

information content of the prior: it’s as if the data (Beta(s + 1, n − s + 1))

were worth (s + 1) + (n − s + 1)
.
= n observations and the prior (Beta(α, β))

were worth (α + β) observations.

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 63



The Prior Data Set

This can be used to judge whether the prior is more informative than

intended — here it’s equivalent to (4.5 + 25.5) = 30 binary observables with a

mean of 0.15.

In Bayesian inference the prior information can always be thought of as

equivalent to a prior data set, in the sense that if

(a) I were to merge the prior data set with the sample data set and do a

likelihood analysis on the merged data, and

(b) You were to do a Bayesian analysis with the same prior information

and likelihood,

we would get the same answers.

Conjugate analysis has the advantage that the prior sample size can be

explicitly worked out: here, for example, the prior data set in effect consists

of α = 4.5 1s and β = 25.5 0s, with prior sample size n0 = (α + β)
.
= 30.

Even with non-conjugate Bayesian analyses, thinking of the prior

information as equivalent to a data set is a valuable heuristic.
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Prior-To-Posterior Updating

(44) can be summarized by saying





θ ∼ Beta(α, β)

(Yi|θ) IID∼ Bernoulli(θ),

i = 1, . . . , n





→ (θ|y) ∼ Beta(α + s, β + n − s), (45)

where y = (y1, . . . , yn) and s =
∑n

i=1 yi.

Suppose the n = 400 DH patients include s = 72 deaths ( s
n

= 0.18).
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Prior-To-Posterior Updating (continued)

Then the prior is Beta(4.5, 25.5), the likelihood is Beta(73, 329), the

posterior for θ is Beta(76.5, 353.5), and the three densities plotted on the

same graph are given above.

In this case the posterior and the likelihood nearly coincide, because the data

information outweighs the prior information by 400
30

= more than 13 to 1.

The mean of a Beta(α, β) distribution is α
α+β

; with this in mind the posterior

mean has an intuitive expression as a weighted average of the prior mean and

data mean, with weights determined by the effective sample size of the prior,

(α + β), and the data sample size n:

α + s

α + β + n
=

(
α + β

α + β + n

) (
α

α + β

)
+

(
n

α + β + n

) ( s

n

)

posterior

mean
=


 prior

weight




 prior

mean


+


 data

weight




 data

mean




.178 = (.070) (.15) + (.93) (.18)
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Comparison With Frequentist Modeling

Another way to put this is that the data mean, ȳ = s
n

= 72
400

= .18, has been

shrunken toward the prior mean .15 by (in this case) a modest amount: the

posterior mean is about .178, and the shrinkage factor is 30
30+400

= about .07.

Comparison with frequentist modeling. To analyze these data as a

frequentist You would appeal to the Central Limit Theorem: n = 400 is big

enough so that the repeated-sampling distribution of Ȳ is approximately

N
[
θ,

θ(1−θ)
n

]
, so (as we saw earlier) an approximate 95% confidence interval

for θ would be centered at θ̂ = ȳ = 0.18, with an estimated standard error of√
θ̂(1−θ̂)

n
= 0.0192, and would run roughly from 0.142 to 0.218.

By contrast the posterior for θ is also approximately Gaussian (see the

graph on the next page), with a mean of 0.178 and an SD of√
α∗β∗

(α∗+β∗)2(α∗+β∗+1)
= 0.0184, where α∗ and β∗ are the parameters of the Beta

posterior distribution; a 95% central posterior interval for θ would then run

from about 0.178 − (1.96)(0.0184) = 0.142 to 0.178 + (1.96)(0.0184) = 0.215.

The two approaches (frequentist based only on the sample, Bayesian based on

the sample and the prior You’re using) give almost the same answers in this
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Comparison With Frequentist Modeling (continued)
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case, a result that’s typical of situations with fairly large n and relatively

diffuse prior information.

Note, however, that the interpretation of the two analyses differs:

• In the frequentist approach θ is fixed but unknown and Ȳ is random,

with the analysis based on imagining what would happen if the

hypothetical random sampling were repeated, and appealing to the fact

that across these repetitions (Ȳ − θ)
·∼ Gaussian(0, .0192); whereas
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Comparison With Frequentist Modeling (continued)

• In the Bayesian approach ȳ is fixed at its observed value and θ is

treated as random, as a means of quantifying my posterior uncertainty

about it: (θ − ȳ|ȳ)
·∼ Gaussian(0, .0182).

This means among other things that, while it’s not legitimate with the

frequentist approach to say that PF (.14 ≤ θ ≤ .22)
.
= .95, which is what many

users of confidence intervals would like them to mean, the corresponding

statement PB(.14 ≤ θ ≤ .22|y,diffuse prior information)
.
= .95 is a natural

consequence of the Bayesian approach.

In the case of diffuse prior information and large n this justifies the fairly

common informal practice of computing inferential summaries in a

frequentist way and then interpreting them in a Bayesian way.

When non-diffuse prior information is available and You use it, Your answer

will differ from a frequentist analysis based on the same likelihood.

If Your prior is retrospectively seen to have been well-calibrated You’ll get a

better answer than with the frequentist approach; if poorly calibrated, a

worse answer (Samaniego and Reneau, 1994):
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Comparison With Frequentist Modeling (continued)

“bad” Bayesian ≤ frequentist ≤ “good” Bayesian

What You make of this depends on Your risk-aversion: Is it better to try to

land on the right in this box, running some risk of landing on the left, or to

steer a middle course?

(NB I’ll give several examples later in which a Bayesian analysis is better even

with diffuse prior information: the point is that likelihood methods

don’t always have good repeated-sampling properties with small

samples, and the Bayesian approach can remedy this problem.)

Bernoulli prediction. The predictive distribution for future Yi in the

Bernoulli model was shown back on page 45 (equation (35)) to be

p(Ym+1 = ym+1, . . . , Yn = yn|y1, . . . , ym) = (46)

=

∫ 1

0

n∏

i=m+1

θ
yi(1 − θ)1−yi p(θ|y1, . . . , ym) dθ .
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Bernoulli Prediction (continued)

It became clear earlier that if the prior is taken to be Beta(α, β) the posterior

p(θ|y1, . . . , ym) in this expression is Beta(α∗, β∗), where α∗ = α + s and

β∗ = β + (n − s).

As an example of an explicit calculation with (46) in this case, suppose that

You’ve observed n of the Yi, obtaining data vector y = (y1, . . . , yn), and You

want to predict Yn+1.

Obviously p(Yn+1 = yn+1|y) has to be a Bernoulli(θ∗) distribution for some

θ∗, and intuition says that θ∗ should just be the mean α∗

α∗+β∗
of the posterior

distribution for θ given y.

(46) in this case gives for p(Yn+1 = yn+1|y) the expression

∫ 1

0

θ
yn+1(1 − θ)1−yn+1

Γ(α∗ + β∗)

Γ(α∗) Γ(β∗)
θ

α∗−1(1 − θ)β∗−1
dθ

=
Γ(α∗ + β∗)

Γ(α∗) Γ(β∗)

∫ 1

0

θ
α∗+yn+1−1(1 − θ)(β

∗−yn+1+1)−1
dθ, (47)

and a symbolic computing package such as Maple (or examination of the
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Bernoulli Prediction (continued)

logic leading to the normalizing constant of the Beta distribution) then

yields that p(Yn+1 = yn+1|y) is
[
Γ(α∗ + yn+1)

Γ(α∗)

] [
Γ(β∗ − yn+1 + 1)

Γ(β∗)

] [
Γ(α∗ + β∗)

Γ(α∗ + β∗ + 1)

]
. (48)

Recalling that Γ(x+1)
Γ(x)

= x for any real number x leads to simple expressions

that match intuition; in the case yn+1 = 1, for instance, (48) becomes

p(Yn+1 = 1|y) =

[
Γ(α∗ + 1)

Γ(α∗)

] [
Γ(α∗ + β∗)

Γ(α∗ + β∗ + 1)

]

=
α∗

α∗ + β∗
. (49)

For example, with (α, β) = (4.5, 25.5) and n = 400 with s = 72, we saw earlier

that the posterior for θ was Beta(76.5, 353.5), and this posterior distribution

has mean α∗

α∗+β∗
= 0.178.

In this situation You would expect the next AMI patient who comes along to

die within 30 days of admission with probability 0.178, so the predictive

distribution above makes good sense.
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The Binomial Distribution

It became clear above that the sum s =
∑n

i=1 yi of the 1s and 0s is a

sufficient statistic for θ with the Bernoulli likelihood.

This means that if You buy into the model (Yi|θ) IID∼ Bernoulli(θ), You don’t

care whether You observe the entire data vector Y = (Y1, . . . , Yn) or its sum

S =
∑n

i=1 Yi.

The distribution of S in repeated sampling has a familiar form: it’s just the

binomial distribution Binomial(n, θ), which counts the number of successes in

a series of IID success/failure trials.

Recall that if S ∼ Binomial(n, θ) then S has discrete density

p(S = s|θ) =






 n

s


 θs (1 − θ)n−s if s = 0, . . . , n

0 otherwise



 .

This gives another conjugate updating rule in simple Bayesian modeling

for free: if the data set just consists of a single draw S from a binomial

distribution, then the conjugate prior for the success probability θ is Beta(α, β),

and the updating rule, which follows directly from (45), is
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Two Important General Points





θ ∼ Beta(α, β)

(S|θ) ∼ Binomial(n, θ)



→ (θ|s) ∼ Beta(α + s, β + n − s). (50)

1 (the sequential nature of Bayesian learning) Suppose You and I are

observing data (y1, . . . , yn) to learn about a parameter θ, and we have no

reason throughout this observation process to change (the sampling

distribution/likelihood part of) our model.

We both start with the same prior p1(θ) before any of the data arrive, but we

adopt what appear to be different analytic strategies:

• You wait until the whole data set (y1, . . . , yn) has been observed and

update p1(θ) directly to the posterior distribution p(θ|y1, . . . , yn),

whereas

• I stop after seeing (y1, . . . , ym) for some m < n, update p1(θ) to an

intermediate posterior distribution p(θ|y1, . . . , ym), and then I go on

from there, observing (ym+1, . . . , yn) and finally updating to a posterior on

θ that takes account of the whole data set (y1, . . . , yn).
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Two Important General Points (continued)

Q1 What should I use for my intermediate prior distribution p2(θ)?

A1 Naturally enough, the right thing to do is to set p2(θ) = p(θ|y1, . . . , ym).

The informal way people refer to this is to say that yesterday’s posterior

distribution is today’s prior distribution.

Q2 If I use the posterior in A1, do You and I get the same answer for

p(θ|y1, . . . , yn) in the end?

A2 Yes (You can check this).

2 (the generality of conjugate analysis) Having seen conjugate priors

used with binary outcomes, it’s clear that conjugate analysis has a

variety of advantages:

• It’s mathematically straightforward;

• The posterior mean turns out to be a weighted average of the prior and

data means; and

• The prior is nicely interpretable as an information source that’s

equivalent to a data set, and it’s easy to figure out the prior sample size.
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Two Important General Points (continued)

It’s natural to wonder, though, what’s lost in addition to what’s gained by

adopting a conjugate prior.

The main disadvantage of conjugate priors is that in their simplest form

they’re not flexible enough to express all possible forms

of prior information.

For example, in the AMI mortality case study, what if You wanted to combine

a bimodal prior distribution with the Bernoulli likelihood?

This isn’t possible when using a single member of the Beta(α, β) family.

However, it’s possible to prove the following:

Theorem (Diaconis and Ylvisaker 1985). Given a likelihood that’s a member

of the exponential family (more about this later), any prior distribution can

be expressed as a mixture of priors that are conjugate to that likelihood.

For example, in the AMI case study the model could be

J ∼ p(J)

(θ|J) ∼ Beta(αJ , βJ) (51)
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2.8 Integer-Valued Outcomes

(Yi|θ) IID∼ Bernoulli(θ), i = 1, . . . , n,

for some distribution p(J) on the positive integers — this is completely

general but loses some of the advantages of simple conjugate analysis (e.g.,

closed-form computations are no longer possible).

Case Study: Hospital length of stay for birth of premature babies. As a small

part of a study I worked on at the Rand Corporation in the late 1980s, we

obtained data on a random sample of n = 14 women who came to a hospital in

Santa Monica, CA, in 1988 to give birth to premature babies.

One (integer-valued) outcome of interest was

y = length of hospital stay (LOS).

Here’s a preliminary look at the data in R:

> y

[1] 1 2 1 1 1 2 2 4 3 6 2 1 3 0

> sort( y )

[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6
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Integer-Valued Outcomes (continued)

> table( y )

0 1 2 3 4 6

1 5 4 2 1 1

> stem( y, scale = 2 )

The decimal point is at the |

0 | 0

1 | 00000

2 | 0000

3 | 00

4 | 0

5 |

6 | 0

> mean( y )

[1] 2.071429

> sd( y )

[1] 1.54244

> var( y )

[1] 2.37912
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Poisson Modeling

One possible model for non-negative integer-valued outcomes is the

Poisson distribution

P (Yi = yi|λ) =





λyi e−λ

yi!
for yi = 0, 1, . . .

0 otherwise



 , (52)

for some λ > 0.

As usual Maple can be used to work out the mean and variance of

this distribution:

> assume( lambda > 0 );

> p := ( y, lambda ) -> lambda^y * exp( - lambda ) / y!;

y

lambda exp(-lambda)

p := (y, lambda) -> --------------------

y!

> simplify( sum( p( y, lambda ), y = 0 .. infinity ) );

1

> simplify( sum( y * p( y, lambda ), y = 0 .. infinity ) );

lambda~

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 79



Informal Model-Checking

> simplify( sum( ( y - lambda )^2 * p( y, lambda ),

y = 0 .. infinity ) );

lambda~

Thus if (Y |λ) ∼ Poisson(λ), E(Y ) = V (Y ) = λ, which people sometimes

express by saying that the variance-to-mean ratio (VTMR) for the Poisson

is 1.

R can be used to check informally whether the Poisson is a good fit to the

LOS data:

> dpois( 0:7, mean( y ) )

[1] 0.126005645 0.261011693 0.270333539 0.186658872 0.096662630

[6] 0.040045947 0.013825386 0.004091186

> print( n <- length( y ) )

[1] 14

> table( y ) / n

0 1 2 3 4 6

0.07142857 0.35714286 0.28571429 0.14285714 0.07142857 0.07142857
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Informal Model-Checking (continued)

> cbind( c( dpois( 0:6, mean( y ) ),

1 - sum( dpois( 0:6, mean( y ) ) ) ),

apply( outer( y, 0:7, ’==’ ), 2, sum ) / n )

[,1] [,2]

[1,] 0.126005645 0.07142857

[2,] 0.261011693 0.35714286

[3,] 0.270333539 0.28571429

[4,] 0.186658872 0.14285714

[5,] 0.096662630 0.07142857

[6,] 0.040045947 0.00000000

[7,] 0.013825386 0.07142857

[8,] 0.005456286 0.00000000

The second column in the above table records the values of the Poisson

probabilities for λ = 2.07, the mean of the yi, and the third column is the

empirical relative frequencies; informally the fit is reasonably good.

Another informal check comes from the fact that the sample mean and

variance are 2.07 and 1.5422 .
= 2.38, which are reasonably close.
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Does Exchangeability → Sampling Distribution Here? (No.)

Exchangeability. As with the AMI mortality case study, before the data

arrive I recognize that my uncertainty about the Yi is exchangeable, and you

would expect from a generalization of the binary-outcomes version of de

Finetti’s Theorem that the structure of a plausible Bayesian model for the

data would then be

θ ∼ p(θ) (prior) (53)

(Yi|θ) IID∼ F (θ) (likelihood),

where θ is some parameter (vector) and F (θ) is some parametric family of

distributions on the non-negative integers indexed by θ.

Thus, in view of the preliminary examination of the data above, a plausible

Bayesian model for these data is

λ ∼ p(λ) (prior) (54)

(Yi|λ)
IID∼ Poisson(λ) (likelihood),

where λ is a positive real number.
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Model Uncertainty

NB (1) This approach to model-building involves a form of cheating,

because we’ve used the data twice: once to choose the model, and again to

draw conclusions conditional on the chosen model.

The result in general can be a failure to assess and propagate

model uncertainty (e.g., Draper 1995).

(2) Frequentist modeling often employs this same kind of cheating in

specifying the likelihood function.

(3) There are two Bayesian ways out of this dilemma: cross-validation and

Bayesian non-parametric/semi-parametric methods.

The latter is beyond the scope of this course; I’ll give examples

of the former later.

To get more practice with Bayesian calculations I’m going to ignore the

model uncertainty problem for now and pretend that somehow we knew

that the Poisson was a good choice.

The likelihood function in model (54) is
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Poisson Likelihood

l(λ|y) = c pY1,... ,Yn(y1, . . . , yn|λ)

= c

n∏

i=1

pYi(yi|λ) (55)

= c

n∏

i=1

λyie−λ

yi!
= c λ

s
e
−nλ

,

where y = (y1, . . . , yn) and s =
∑n

i=1 yi; here
(∏n

i=1 yi!
)−1

can be absorbed

into the generic positive c because it doesn’t involve λ.

Thus (as was true in the Bernoulli model) s =
∑n

i=1 yi is sufficient for λ in the

Poisson model, and we can write l(λ|s) instead of l(λ|y) if we want.

If a conjugate prior p(λ) for λ exists it must be such that the product

p(λ) l(λ|s) has the same mathematical form as p(λ).

Examination of (55) reveals that the same trick works here as with Bernoulli

data, namely taking the prior to be of the same form as the likelihood:

p(λ) = c λ
α−1

e
−βλ (56)
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The Gamma Distribution

for some α > 0, β > 0 — this is the Gamma distribution λ ∼ Γ(α, β) for

λ > 0 (see GCSR, Appendix A).

As usual Maple can work out the normalizing constant:

> assume( lambda > 0, alpha > 0, beta > 0 );

> p1 := ( lambda, alpha, beta ) -> lambda^( alpha - 1 ) *

exp( - beta * lambda );

(alpha - 1)

p1 := (lambda, alpha, beta) -> lambda exp(-beta lambda)

> simplify( integrate( p1( lambda, alpha, beta ),

lambda = 0 .. infinity ) );

(-alpha~)

beta~ GAMMA(alpha~)

Thus c−1 = β−α Γ(α) and the

proper definition of the Gamma distribution is

If λ ∼ Γ(α, β) then p(λ) =
βα

Γ(α)
λ

α−1
e
−β λ (57)

for α > 0, β > 0.
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The R Implementation of the Gamma Distribution

As usual R can also be used to explore the behavior of this family of

distributions as a function of its inputs α and β, but you need to watch out

— there are two different parameterizations in common usage:

> help( dgamma )

GammaDist package:stats R Documentation

The Gamma Distribution

Description:

Density, distribution function, quantile function and random

generation for the Gamma distribution with parameters ’shape’ and

’scale’.

Usage:

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)

pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)

qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)

rgamma(n, shape, rate = 1, scale = 1/rate)

Arguments:

x, q: vector of quantiles.
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The Gamma Distribution in R (continued)

p: vector of probabilities.

n: number of observations. If ’length(n) > 1’, the length is

taken to be the number required.

rate: an alternative way to specify the scale.

shape, scale: shape and scale parameters. Must be positive, ’scale’

strictly.

log, log.p: logical; if ’TRUE’, probabilities/densities p are returned

as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x],

otherwise, P[X > x].

Details:

If ’scale’ is omitted, it assumes the default value of ’1’.

The Gamma distribution with parameters ’shape’ = a and ’scale’ = s

has density

f(x)= 1/(s^a Gamma(a)) x^(a-1) e^-(x/s)

for x >= 0, a > 0 and s > 0. (Here Gamma(a) is the function

implemented by R’s ’gamma()’ and defined in its help. Note that

a=0 corresponds to the trivial distribution with all mass at point

0.)
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The Gamma Distribution in R (continued)

The quantity in R corresponding to our α is evidently shape, but notice that

what R calls scale is 1
β

for us; the name for β in R is rate,

the reciprocal of scale:

lambda.grid.1 <- seq( 0, 12, length = 500 )

postscript( "gamma-beta-equals-1.ps" )

plot( lambda.grid.1, dgamma( lambda.grid.1, shape = 1, rate = 1 ),

xlab = ’lambda’, ylab = ’Density’, type = ’l’, main = ’beta = 1’ )

text( 1, 0.9, ’alpha = 1’ )

lines( lambda.grid.1, dgamma( lambda.grid.1, shape = 2, rate = 1 ),

lty = 2, col = ’red’ )

text( 2, 0.4, ’alpha = 2’, col = ’red’ )

lines( lambda.grid.1, dgamma( lambda.grid.1, shape = 3, rate = 1 ),

lty = 3, col = ’blue’ )

text( 3.5, 0.3, ’alpha = 3’, col = ’blue’ )

lines( lambda.grid.1, dgamma( lambda.grid.1, shape = 6, rate = 1 ),

lty = 4, col = ’green’ )

text( 9, 0.15, ’alpha = 6’, col = ’green’ )

dev.off( )
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α Controls Shape in the Gamma Family
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The R name for α is a good choice: α evidently controls the shape of the

Gamma family.

What distributional shape does the Gamma approach as α → ∞?
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The Exponential Distribution

When α = 1 the Gamma distributions have a special form that you’ll probably

recognize — they’re the exponential distributions E(β): for β > 0

If λ ∼ E(β) then p(λ) =





β e−β λ for λ > 0

0 otherwise



 . (58)

What about the effect of β, or its reciprocal, on the distribution?

lambda.grid.2 <- seq( 0, 5, length = 500 )

plot( lambda.grid.2, dgamma( lambda.grid.2, shape = 2, rate = 1 ),

xlab = ’lambda’, ylab = ’Density’, type = ’l’, main = ’alpha = 2’,

ylim = c( 0, 1.1 ) )

text( 2.5, 0.3, ’beta = 1’ )

lines( lambda.grid.2, dgamma( lambda.grid.2, shape = 2, rate = 2 ),

lty = 2, col = ’red’ )

text( 1.5, 0.6, ’beta = 2’, col = ’red’ )

lines( lambda.grid.2, dgamma( lambda.grid.2, shape = 2, rate = 3 ),

lty = 3, col = ’blue’ )

text( 1, 1, ’beta = 3’, col = ’blue’ )
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β (and 1

β
) Control the Spread
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In the Gamma family the parameter β controls the spread of the distribution,

but 1
β

controls the scale, in the sense that as 1
β

increases the distribution

becomes more spread out.
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1

β
Is a Scale Parameter For the Gamma Distribution

Definition Given a random quantity y whose density p(y|σ) depends on a

parameter σ > 0, if it’s possible to express p(y|σ) in the form 1
σ

f( y

σ
), where

f(·) is a function which does not depend on y or σ, then σ is called a

scale parameter for the parametric family p.

Letting f(t) = e−t and taking σ = 1
β
, You can see that the Gamma family can

be expressed in this way, so 1
β

is a scale parameter for the Gamma

distribution.

As usual Maple can also work out the mean and variance of this family:

> p := ( lambda, alpha, beta ) -> beta^alpha * lambda^( alpha - 1 ) *

exp( - beta * lambda ) / GAMMA( alpha );

alpha (alpha - 1)

beta lambda exp(-beta lambda)

p := (lambda, alpha, beta) -> ---------------------------------------------

GAMMA(alpha)

> simplify( integrate( p( lambda, alpha, beta ),

lambda = 0 .. infinity ) );

1
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Conjugate Updating With the Poisson Likelihood

> simplify( integrate( lambda * p( lambda, alpha, beta ),

lambda = 0 .. infinity ) );

alpha~

------

beta~

> simplify( integrate( ( lambda - alpha / beta )^2 *

p( lambda, alpha, beta ), lambda = 0 .. infinity ) );

alpha~

------

2

beta~

Thus if λ ∼ Γ(α, β) then E(λ) = α
β

and V (λ) = α
β2 , and

conjugate updating is now straightforward: with y = (y1, . . . , yn) and

s =
∑n

i=1 yi, by Bayes’s Theorem

p(λ|y) = c p(λ) l(λ|y)

= c
(
c λ

α−1
e
−βλ

)(
c λ

s
e
−nλ

)
(59)

= c λ
(α+s)−1

e
−(β+n)λ

,

and the resulting distribution is just Γ(α + s, β + n).
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Conjugate Poisson Analysis

This can be summarized as follows:




(λ|α, β) ∼ Γ(α, β)

(Yi|λ)
IID∼ Poisson(λ),

i = 1, . . . , n





→ (λ|s) ∼ Γ(α∗
, β

∗), (60)

where (α∗, β∗) = (α + s, β + n) and s =
∑n

i=1 yi is a sufficient statistic for λ

in this model.

The posterior mean of λ here is evidently α∗

β∗
= α+s

β+n
, and the prior and data

means are α
β

and ȳ = s
n
, so (as was the case in the Bernoulli model) the

posterior mean can be written as a weighted average of the

prior and data means:

α + s

β + n
=

(
β

β + n

)(
α

β

)
+

(
n

β + n

)( s

n

)
. (61)

Thus the prior sample size n0 in this model is just β (which makes sense

given that 1
β

is the scale parameter for the Gamma distribution), and the prior

acts like a dataset consisting of β observations with mean α
β
.
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The Γ(ε, ε) Prior

LOS data analysis. Suppose that, before the current data set is scheduled

to arrive, I know little about the mean length of hospital stay of women giving

birth to premature babies.

Then for my prior on λ I’d like to specify a member of the Γ(α, β) family which

is relatively flat in the region in which the likelihood function

is appreciable.

A convenient and fairly all-purpose default choice of this type is Γ(ε, ε)

for some small ε like 0.001.

When used as a prior this distribution has prior sample size ε; it also has

mean 1, but that usually doesn’t matter when ε is tiny.

> plot( p( lambda, 0.001, 0.001 ), lambda = 0 .. 4, color = black );

As the graph on the next page shows, this distribution is rather flat over

the entire region (1,∞); it has an unpleasant spike near 0, but this is only

a potential problem when the likelihood density is concentrated near 0

(in that case You may be inserting stronger prior information

than You intended).
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The Empirical Rule
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With the LOS data s = 29 and n = 14, so the likelihood for λ is like a

Γ(30, 14) density, which has mean 30
14

.
= 2.14 and SD

√
30
142

.
= 0.39.

Thus by the Empirical Rule the likelihood is appreciable in the range

(mean ± 3 SD)
.
= (2.14 ± 1.17)

.
= (1.0, 3.3), and you can see from the plot above

that the prior is indeed relatively flat in this region.
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LOS Data Analysis (continued)

From the Bayesian updating in (60), with a Γ(0.001, 0.001) prior the

posterior is Γ(29.001, 14.001).

It’s useful, in summarizing the updating from prior through likelihood to

posterior, to make a table that records measures of center and spread at each

point along the way.

For example, the Γ(0.001, 0.001) prior, when regarded (as usual) as a density

for λ, has mean 1.000 and SD
√

1000
.
= 31.6 (i.e., informally, as far as we’re

concerned, before the data arrive λ could be anywhere between 0

and (say) 100).

And the Γ(29.001, 14.001) posterior has mean 29.001
14.001

.
= 2.071 and SD√

29.001
14.0012

.
= 0.385, so after the data have arrived we know quite a bit more

than before.

There are two main ways to summarize the likelihood — Fisher’s approach

based on maximizing it, and the Bayesian approach based on regarding it as a

density and integrating over it — and it’s instructive to compute them both

and compare.
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Likelihood Calculations

The likelihood-integrating approach (which, at least in one-parameter

problems, is essentially equivalent to Fisher’s (1935) attempt at fiducial

inference) treats the Γ(30, 14) likelihood as a density for λ, with mean
30
14

.
= 2.143 and SD

√
30
142

.
= 0.391.

As for the likelihood-maximizing approach, from (55) the log likelihood

function is

ll(λ|y) = ll(λ|s) = log
(
c λ

s
e
−nλ

)
= c + s log λ − nλ, (62)

and this is maximized as usual (check that it’s the max) by setting the

derivative equal to 0 and solving:

∂

∂λ
ll(λ|s) =

s

λ
− n = 0 iff λ = λ̂MLE =

s

n
= ȳ. (63)

Since the MLE λ̂MLE turns out to be our old friend the sample mean ȳ, you

might be tempted to conclude immediately that ŜE
(
λ̂MLE

)
= σ̂√

n
, where

σ̂ = 1.54 is the sample SD, and indeed it’s true in repeated sampling that

V
(
Ȳ
)

= V(Y1)
n

; but the Poisson distribution has variance V (Y1) = λ, so that
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Calibrating the MLE

√
V
(
Ȳ
)

=
√

λ√
n
, and there’s no guarantee in the Poisson model that the best

way to estimate
√

λ in this standard error calculation is with the sample SD σ̂

(in fact we have a strong hint from the above MLE calculation that the

sample variance is irrelevant to the estimation of λ in the Poisson model, since

the sample variance does not arise in the Poisson likelihood).

The right (large-sample) likelihood-based standard error for λ̂MLE, using the

Fisher information logic we examined earlier, is obtained from the following

calculation:

∂2

∂λ2
log l(λ|y) = − s

λ2
, so (64)

Î
(
λ̂MLE

)
=

[
− ∂2

∂λ2
log l(λ|y)

]

λ=λ̂MLE

=
( s

λ2

)
λ=ȳ

=
s

ȳ2
=

n

ȳ
, and

V̂
(
λ̂MLE

)
= Î

−1
(
λ̂MLE

)
=

ȳ

n
=

λ̂MLE

n
.
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Prior-Likelihood-Posterior Summaries

So in this case study Fisher’s likelihood-maximizing approach would

estimate λ by λ̂MLE = ȳ = 29
14

.
= 2.071, with a give-or-take of

ŜE
(
λ̂MLE

)
=

√
λ̂MLE√

n
= 1.44√

14

.
= 0.385.

All of this may be summarized in the following table:

Likelihood

Prior Maximizing Integrating Posterior

Mean/Estimate 1.00 2.071 2.143 2.071

SD/SE 31.6 0.385 0.391 0.385

The discrepancies between the likelihood-maximizing and

likelihood-integrating columns in this table would be smaller with a larger

sample size and would tend to 0 as n → ∞.

The prior-likelihood-posterior plot comes out like this:

> plot( { p( lambda, 0.001, 0.001 ), p( lambda, 30, 14 ),

p( lambda, 29.001, 14.001 ) }, lambda = 0 .. 5, color = black );
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Prior-Likelihood-Posterior Summaries (continued)
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For interval estimation in the maximum-likelihood approach the best we

could do, using the technology I’ve described to you so far, would be to appeal

to the CLT (even though n is only 14) and use λ̂MLE ± 1.96 ŜE(λ̂MLE)
.
=

2.071 ± (1.96)(0.385)
.
= (1.316, 2.826) as an approximate 95% confidence

interval for λ.
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The Interval Should Be Asymmetric in This Problem

You can see from the previous plot that the likelihood function is asymmetric,

so a more careful method (e.g., the bootstrap; Efron 1979) would be needed to

create a better interval estimate from the likelihood point of view.

Some trial and error with Maple can be used to find the lower and upper limits

of the central 95% posterior interval for λ:

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 0 .. 1.316 ) );

.01365067305

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 0 .. 1.4 ) );

.02764660367

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 0 .. 1.387 ) );

.02495470339

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 2.826 .. infinity ) );

.03403487851

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 2.890 .. infinity ) );

.02505307631

Thus a 95% (central) posterior interval for λ, given a diffuse prior, runs

from 1.387 to 2.890, and is (correctly) asymmetric around the posterior

mean of 2.071.

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 102



The R Solution

R can be used to work out the limits of this interval even more readily:

> help( qgamma )

GammaDist package:base R Documentation

The Gamma Distribution

Description:

Density, distribution function, quantile function and random

generation for the Gamma distribution with parameters ‘shape’ and

‘scale’.

Usage:

dgamma(x, shape, scale=1, log = FALSE)

pgamma(q, shape, scale=1, lower.tail = TRUE, log.p = FALSE)

qgamma(p, shape, scale=1, lower.tail = TRUE, log.p = FALSE)

rgamma(n, shape, scale=1)

Arguments:

x, q: vector of quantiles.

p: vector of probabilities.

n: number of observations.

shape, scale: shape and scale parameters.

log, log.p: logical; if TRUE, probabilities p are given as log(p).

lower.tail: logical; if TRUE (default), probabilities are P[X <= x],
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The R Solution (continued)

otherwise, P[X > x].

Value:

‘dgamma’ gives the density, ‘pgamma’ gives the distribution

function ‘qgamma’ gives the quantile function, and ‘rgamma’

generates random deviates.

See Also:

‘gamma’ for the Gamma function, ‘dbeta’ for the Beta distribution

and ‘dchisq’ for the chi-squared distribution which is a special

case of the Gamma distribution.

> qgamma( 0.025, 29.001, 1 / 14.001 )

[1] 1.387228

> qgamma( 0.975, 29.001, 1 / 14.001 )

[1] 2.890435

Maple or R can also be used to obtain the probability content, according to

the posterior distribution, of the approximate 95% (large-sample)

likelihood-based interval:

> evalf( Int( p( lambda, 29.001, 14.001 ), lambda = 1.316 .. 2.826 ) );

.9523144484
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Predictive Distributions

So the maximization approach has led to decent approximations here

(later I’ll give examples where maximum likelihood doesn’t do well in

small samples).

Predictive distributions in this model can be computed by Maple in the

usual way: e.g., to compute p(yn+1|y) for y = (y1, . . . , yn) we want to evaluate

p(yn+1|y) =

∫ ∞

0

p(yn+1, λ|y) dλ

=

∫ ∞

0

p(yn+1|λ, y) p(λ|y) dλ (65)

=

∫ ∞

0

p(yn+1|λ) p(λ|y) dλ

=

∫ ∞

0

λyn+1e−λ

yn+1!

(β∗)α∗

Γ(α∗)
λ

α∗−1
e
−β∗λ

dλ,

=
(β∗)α∗

Γ(α∗) yn+1!

∫ ∞

0

λ
(α∗+yn+1)−1

e
−(β∗+1)λ

dλ,

where α∗ = α + s and β∗ = β + n; in these expressions yn+1 is a

non-negative integer.
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Predictive Distributions (continued)

> assume( astar > 0, bstar > 0, yf > 0 );

> simplify( bstar^astar * int( lambda^( astar + yf - 1 ) *

exp( - ( bstar + 1 ) * lambda ), lambda = 0 .. infinity ) /

( GAMMA( astar ) * yf! ) );

astar~ (-astar~ - yf~)

bstar~ (bstar~ + 1) GAMMA(astar~ + yf~)

------------------------------------------------------------

GAMMA(astar~) GAMMA(yf~ + 1)

A bit of rearranging then gives that for yn+1 = 0, 1, . . . ,

p(yn+1|y) =
Γ(α∗ + yn+1)

Γ(α∗) Γ(yn+1 + 1)

(
β∗

β∗ + 1

)α∗ (
1

β∗ + 1

)yn+1

. (66)

This is called the Poisson-Gamma distribution, because (65) is asking us to

take a mixture (weighted average) of Poisson distributions, using probabilities

from a Gamma distribution as the mixing weights.

(66) is a generalization of the negative binomial distribution (e.g., Johnson

and Kotz 1994), which you may have encountered in your

earlier probability study.
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The Poisson-Gamma Distribution

Maple can try to get simple expressions for the mean and variance of

this distribution:

> assume( alpha > 0, beta > 0 );

> pg := ( y, alpha, beta ) -> GAMMA( alpha + y ) *

( beta / ( beta + 1 ) )^alpha * ( 1 / ( beta + 1 ) )^y /

( GAMMA( alpha ) * GAMMA( y + 1 ) );

/ beta \alpha / 1 \y

GAMMA(alpha + y) |--------| |--------|

\beta + 1/ \beta + 1/

pg := (y, alpha, beta) -> --------------------------------------------

GAMMA(alpha) GAMMA(y + 1)

> simplify( sum( pg( y, alpha, beta ), y = 0 .. infinity ) );

1

> simplify( sum( y * pg( y, alpha, beta ), y = 0 .. infinity ) );

alpha~

------

beta~

So the mean of the Poisson-Gamma(α∗, β∗) distribution is E(yn+1|y) = α∗

β∗
.
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Contrasting Inference and Prediction

> simplify( sum( ( y - alpha / beta )^2 * pg( y, alpha, beta ),

y = 0 .. infinity ) );

alpha~ (beta~ + 1)

------------------

2

beta~

And the variance of the Poisson-Gamma(α∗, β∗) distribution is

V (yn+1|y) =
α∗

β∗

(
1 +

1

β∗

)
. (67)

This provides an interesting contrast between inference and prediction:

we’ve already seen in this model that the posterior mean and variance of λ are
α∗

β∗
= α+s

β+n
and α∗

(β∗)2
= α+s

(β+n)2
, respectively.

Thus λ (the inferential objective) and yn+1 (the predictive objective) have

the same posterior mean, but the posterior variance of yn+1 is much larger, as

can be seen by the following argument.
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Contrasting Inference and Prediction (continued)

Posterior

Quantity Mean Variance

λ α+s
β+n

α+s
(β+n)2

= α+s
β+n

(
0 + 1

β+n

)

yn+1
α+s
β+n

α+s
β+n

(
1 + 1

β+n

)

(1) Denoting by µ the mean of the population from which the Yi are thought

of as (like) a random sample, when n is large α and β will be small in relation

to s and n, respectively, and the ratio ȳ = s
n

should more and more closely

approach µ — thus for large n,

E(λ|y) = E(yn+1|y)
.
= µ. (68)

(2) For the Poisson distribution the (population) mean µ and variance σ2 are

equal, meaning that for large n the ratio α+s
β+n

will be close both to µ and to σ2.

Thus for large n,

V (λ|y)
.
=

σ2

n
but V (yn+1|y)

.
= σ

2
. (69)
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Predictive Model-Checking

An informal way to restate (69) is to say that accurate prediction of new data

is an order of magnitude harder (in powers of n) than accurate inference

about population parameters.

Bayesian model-checking with predictive distributions. One way to

check a model like (60) is as follows — as i goes from 1 to n,

do the following two things:

(1) Temporarily set aside observation yi, obtaining a new dataset

y−i = (y1, . . . , yi−1, yi+1, . . . , yn) with (n − 1) observations.

(2) Use the current Bayesian model applied to y−i to predict yi, and

summarize the extent to which the actual value of yi is surprising in view of

this predictive distribution.

A simple measure of surprise is predictive z–scores (later, if there’s time, I’ll

talk about a better measure):

zi =
yi − E[yi|y−i]√

V [yi|y−i]
. (70)
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Predictive Model-Checking (continued)

The idea is to compare the surprise measure with its expected behavior if

the model had been “correct” (e.g., z = (z1, . . . , zn) should have mean 0 and

SD 1, and a normal qqplot of the zi values should be approximately linear).

Here’s some R code to carry out this program on the LOS data.

> poisson.gamma <- function( y, alpha, beta ) {

log.density <- lgamma( alpha + y ) + alpha *

log( beta / ( beta + 1 ) ) - y * log( beta + 1 ) -

lgamma( alpha ) - lgamma( y + 1 )

return( exp( log.density ) )

}

> print( y <- sort( y ) )

[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6

> print( y.current <- y[ -1 ] )

[1] 1 1 1 1 1 2 2 2 2 3 3 4 6

> print( n.current <- length( y.current ) )

[1] 13

> alpha <- beta <- 0.001

> print( s.current <- sum( y.current ) )

[1] 29
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Predictive Model-Checking (continued)

> print( alpha.star <- alpha + s.current )

[1] 29.001

> print( beta.star <- beta + n.current )

[1] 13.001

> print( pg.current <- poisson.gamma( 0:9, alpha.star, beta.star ) )

[1] 0.1165953406 0.2415099974 0.2587508547 0.1909752933 0.1091243547

[6] 0.0514422231 0.0208209774 0.0074357447 0.0023899565 0.0007017815

> plot( 0:9, pg.current, type = ’n’, xlab = ’y’, ylab = ’Density’ )

> for ( i in 0:9 ) {

segments( i, 0, i, pg.current[ i + 1 ] )

}
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Predictive Model-Checking (continued)

The omitted observed value of 0 is not too unusual

in this predictive distribution.

The following R code loops through the whole dataset to get the

predictive z–scores.

alpha <- beta <- 0.001

z <- rep( 0, n )

for ( i in 1:n ) {

y.current <- y[ -i ]

n.current <- length( y.current )

s.current <- sum( y.current )

alpha.star <- alpha + s.current

beta.star <- beta + n.current

predictive.mean.current <- alpha.star / beta.star

predictive.SD.current <- sqrt( ( alpha.star / beta.star ) *

( 1 + 1 / beta.star ) )

z[ i ] <- ( y[ i ] - predictive.mean.current ) /

predictive.SD.current

}
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Predictive Model-Checking (continued)

z

[1] -1.43921925 -0.75757382 -0.75757382 -0.75757382 -0.75757382

[6] -0.75757382 -0.05138023 -0.05138023 -0.05138023 -0.05138023

[11] 0.68145253 0.68145253 1.44329065 3.06513271

mean( z )

[1] 0.03133708

sqrt( var( z ) )

[1] 1.155077

qqnorm( z )

abline( 0, 1 )
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Predictive Model-Checking (continued)

The 14 predictive z–scores have mean 0.03 (about right) and SD 1.16 (close

enough to 1 when sampling variability is considered?), and the normal qqplot

above shows that the only really surprising observation in the data, as far as the

Poisson model was concerned, is the value of 6, which has a z–score of 3.07.

NB The figure above is only a crude approximation to the right qqplot,

which would have to be created by simulation; even so it’s enough to suggest

how the model might be improved.

I would conclude informally (a) that the Poisson is a decent model for these

data, but (b) if you wanted to expand the model in a direction suggested by

this diagnostic you should look for a model with extra-Poisson variation:

the sample VTMR in this dataset was about 1.15.

Diffuse priors in the LOS case study. In specifying a diffuse prior for λ

in the LOS case study, several alternatives to Γ(ε, ε) might occur to you,

including Γ(1, ε), Γ(α, β) for some large α (like 20, to get a roughly normal

prior) and small β (like 1, to have a small prior sample size), and U(0, C)

for some cutoff C (like 4) chosen to avoid truncation of the likelihood

function, where U(a, b) denotes the uniform distribution on (a, b).
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Prior Specification: Sensitivity Analysis

> plot( p( lambda, 0.001, 0.001 ), lambda = 0 .. 4, v = 0 .. 0.05,

color = black );

> plot( p( lambda, 1.0, 0.001 ), lambda = 0 .. 4, color = black );
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1 2 3 4
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0.000996

0.000997

0.000998

0.000999

0.001

0 1 2 3 4

lambda~

Γ(1, ε) doesn’t look promising initially as a flat prior, but that’s a consequence

of Maple’s default choice of vertical axis:

> plot( p( lambda, 1.0, 0.001 ), lambda = 0 .. 4, v = 0 .. 0.05,

color = black );
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Prior Specification: Sensitivity Analysis (continued)

> plot( p( lambda, 20, 1 ), lambda = 0 .. 4, color = black );

(Left: right-hand plot on previous page with more sensible vertical scale;

right: Γ(20, 1) with not-so-sensible horizontal scale)
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> plot( p( lambda, 20, 1 ), lambda = 0 .. 40, color = black );

As is evident on the next page, Γ(20, 1) does indeed look not far from

Gaussian, and at first it may appear that it is indeed relatively flat
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Prior Specification: Sensitivity Analysis (continued)

in the region where the likelihood is appreciable (λ ∈ (1.0, 3.3)), but we’ll see

below that it’s actually rather more informative than we intend.

Recalling that the mean and SD of a Γ(α, β) random quantity are α
β

and√
α
β2 , respectively, and that when used as a prior with the Poisson likelihood

the Γ(α, β) distribution acts like a dataset with prior sample size β, you can

construct the following table:

Prior Posterior

β =
α Sample Size Mean SD α∗ β∗ Mean SD

0.001 0.001 1 31.6 29.001 14.001 2.071 0.385

1 0.001 1000 1000 30 14.001 2.143 0.391

20 1 20 4.47 49 15 3.267 0.467

20 0.001 20000 4472 49 14.001 3.500 0.500

U(0, C) for C > 4 C
2

C√
12

30 14 2.143 0.391

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 118



Prior Specification: Sensitivity Analysis (continued)

The Γ(1, ε) prior leads to an analysis that’s essentially equivalent to the

integrated likelihood (fiducial) approach back on page 100, and the U(0, C)

prior for C > 4 (say) produces similar results: U(0, C) yields the Γ(s + 1, n)

posterior truncated to the right of C (and this truncation has no effect if you

choose C big enough).

You might say that the U(0, C) distribution has a prior sample size of 0 in

this analysis, and its prior mean C
2

and SD C√
12

(both of which can be made

arbitrarily large by letting C grow without bound) are irrelevant (an example

of how intuition can change when you depart from the class of

conjugate priors).

> plot( { p( lambda, 29.001, 14.001 ), p( lambda, 30, 14.001 ),

p( lambda, 49, 15 ), p( lambda, 49, 14.001 ) }, lambda = 0 .. 6,

color = black );

The moral from the table above and the graph on the next page is that with

only n = 14 observations, some care is needed (e.g., through pre-posterior

analysis) to achieve a prior that doesn’t affect the posterior very much, if

that’s the scientifically appropriate information content of the prior.
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Prior Specification: Sensitivity Analysis (continued)

0
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0.4

0.6

0.8
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1 2 3 4 5 6

lambda~

(Reading from left to right, posteriors with the following priors:

Γ(0.001, 0.001), Γ(1, 0.001), Γ(20, 1), Γ(20, 0.001))
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2.9 Continuous Outcomes

For continuous outcomes there’s an analogue of de Finetti’s Theorem that’s

equally central to Bayesian model-building (e.g., Bernardo and Smith, 1994):

de Finetti’s Theorem for Continuous Outcomes. If Y1, Y2, . . . is an

infinitely exchangeable sequence of real-valued random quantities with

probability measure p, there exists a probability measure Q over D, the space of

all distribution functions on R, such that the joint distribution function of

Y1, . . . , Yn has the form

p(y1, . . . , yn) =

∫

D

n∏

i=1

F (yi) dQ(F ), (71)

where Q(F )
P
= limn→∞ p(Fn) and Fn is the empirical distribution function

based on Y1, . . . , Yn.

In other words, exchangeability of real-valued observables is equivalent to the

hierarchical model

F ∼ p(F ) (prior)

(Yi|F )
IID∼ F (likelihood) (72)
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Model Uncertainty

for some prior distribution p on the set D of

all possible CDFs.

This prior makes the continuous form of de Finetti’s Theorem considerably

harder to apply: to take the elicitation task seriously is to try to specify a

probability distribution on a function space (F is in effect an

infinite-dimensional parameter).

(NB This task is not unique to Bayesians — it’s equivalent to asking “Where

does the likelihood come from?” in frequentist analyses of

observational data.)

What people often do in practice is to appeal to considerations that narrow

down the field, such as an a priori judgment that the Yi ought to be

symmetrically distributed about a measure of center µ, and then try to use a

fairly rich parametric family satisfying (e.g.) the symmetry restriction as a

substitute for all of D.

Strictly speaking you’re not supposed to look at the Yi while specifying your

prior on D — this can lead to a failure to fully assess and propagate model

uncertainty — but not doing so can permit the data to surprise you in ways
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Bayesian Nonparametric Methods

that would make you want to go back and revise your prior (this is an example

of Cromwell’s Rule in action).

As mentioned earlier, in this course I’ll suggest two potential ways out of this

dilemma, based on out-of-sample predictive validation (the model-checking

in the LOS data above was an example of this) and

Bayesian nonparametrics.

Case Study: Measurement of physical constants. What used to be called the

National Bureau of Standards (NBS) in Washington, DC, conducts extremely

high precision measurement of physical constants, such as the actual weight of

so-called check-weights that are supposed to serve as reference standards (like

the official kg).

In 1962–63, for example, n = 100 weighings (listed below) of a block of metal

called NB10, which was supposed to weigh exactly 10g, were made under

conditions as close to IID as possible (Freedman et al., 1998).

The data are on the next page, and give rise to (at least) the following

questions: Q: (a) How much does NB10 really weigh? (b) How certain are

you given the data that the true weight of NB10 is less than (say) 405.25?
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Gaussian Modeling

And (c) How accurately can you predict the 101st measurement?

Value 375 392 393 397 398 399 400 401

Frequency 1 1 1 1 2 7 4 12

Value 402 403 404 405 406 407 408 409

Frequency 8 6 9 5 12 8 5 5

Value 410 411 412 413 415 418 423 437

Frequency 4 1 3 1 1 1 1 1

The graph below is a normal qqplot of the 100 measurements

y = (y1, . . . , yn), which have a mean of ȳ = 404.6 (the units are micrograms

below 10g) and an SD of s = 6.5.

Evidently it’s plausible in answering these questions to assume symmetry of

the “underlying distribution” F in de Finetti’s Theorem.

One standard choice, for instance, is the Gaussian:

(µ, σ
2) ∼ p(µ, σ

2)

(Yi|µ, σ
2)

IID∼ N
(
µ, σ

2)
. (73)
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Diagnosing Non-Normality
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Here N
(
µ, σ2

)
is the familiar normal density

p(yi|µ, σ
2) =

1

σ
√

2π
exp

[
− 1

2σ2
(yi − µ)2

]
. (74)

Bayesian Statistics 2: Exchangeability and Conjugate Modeling 125



One-Parameter Gaussian Location Model

Even though you can see from the previous graph that (73) is not a good

model for the NB10 data, I’m going to fit it anyway, for practice in working

with the normal distribution from a Bayesian point of view (later we’ll

improve upon the Gaussian).

(73) is more complicated than the models in the AMI and LOS case studies

because the parameter θ here is a vector: θ = (µ, σ2).

To warm up for this new complexity let’s first consider a cut-down version of

the model in which we pretend that σ is known to be σ0 = 6.5

(the sample SD).

This simpler model is then




µ ∼ p(µ)

(Yi|µ)
IID∼ N

(
µ, σ2

0

)



 . (75)

The likelihood function in this model is

l(µ|y) =

n∏

i=1

1

σ0

√
2π

exp

[
− 1

2σ2
0

(yi − µ)2
]
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Gaussian Inference For µ

= c exp

[
− 1

2σ2
0

n∑

i=1

(yi − µ)2
]

(76)

= c exp

[
− 1

2σ2
0

(
n∑

i=1

y
2
i − 2µ

n∑

i=1

yi + nµ
2

)]

= c exp


− 1

2
(

σ2
0

n

) (µ − ȳ)2


 .

Thus the likelihood function, when thought of as a density for µ, is a normal

distribution with mean ȳ and SD σ0√
n
.

Notice that this SD is the same as the frequentist standard error for Ȳ based

on an IID sample of size n from the N
(
µ, σ2

0

)
distribution.

(76) also shows that the sample mean ȳ is a sufficient statistic for µ

in model (75).

In finding the conjugate prior for µ it would be nice if the product of two

normal distributions is another normal distribution, because that would

demonstrate that the conjugate prior is normal.
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Gaussian Inference For µ (continued)

Suppose therefore, to see where it leads, that the prior for µ is (say)

p(µ) = N
(
µ0, σ

2
µ

)
.

Then Bayes’s Theorem would give

p(µ|y) = c p(µ) l(µ|y) (77)

= c exp

[
− 1

2σ2
µ

(µ − µ0)
2

]
exp

[
− n

2σ2
0

(µ − ȳ)2
]

= c exp

{
−1

2

[
(µ − µ0)

2

σ2
µ

+
n(µ − ȳ)2

σ2
0

]}
,

and we want this to be of the form

p(µ|y) = c exp

{
−1

2

[
A(µ − B)2 + C

]}

= c exp

{
−1

2

[
Aµ

2 − 2ABµ + (AB
2 + C)

]}
(78)

for some B, C, and A > 0.

Maple can help see if this works:
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Gaussian Inference For µ (continued)

> collect( ( mu - mu0 )^2 / sigmamu^2 +

n * ( mu - ybar )^2 / sigma0^2, mu );

2 2

/ 1 n \ 2 / mu0 n ybar \ mu0 n ybar

|-------- + -------| mu + |-2 -------- - 2 -------| mu + -------- + -------

| 2 2| | 2 2| 2 2

\sigmamu sigma0 / \ sigmamu sigma0 / sigmamu sigma0

Matching coefficients for A and B (we don’t really care about C) gives

A =
1

σ2
µ

+
n

σ2
0

and B =

µ0

σ2
µ

+ nȳ

σ2
0

1
σ2

µ
+ n

σ2
0

. (79)

Since A > 0 this demonstrates two things: (1) the conjugate prior for µ in

model (75) is normal, and (2) the conjugate updating rule (when σ0 is

assumed known) is




µ ∼ N
(
µ0, σ

2
µ

)

(Yi|µ)
IID∼ N

(
µ, σ2

0

)
,

i = 1, . . . , n





→ (µ|y) = (µ|ȳ) = N
(
µ∗, σ

2
∗

)
, (80)
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Precision

where the posterior mean and variance are given by

µ∗ = B =

(
1

σ2
µ

)
µ0 +

(
n

σ2
0

)
ȳ

1
σ2

µ
+ n

σ2
0

and σ
2
∗ = A

−1 =
1

1
σ2

µ
+ n

σ2
0

. (81)

It becomes useful in understanding the meaning of these expressions to define

the precision of a distribution, which is just the reciprocal of its variance:

whereas the variance and SD scales measure uncertainty, the precision scale

quantifies information about an unknown.

With this convention (81) has a series of intuitive interpretations, as follows:

• The prior, considered as an information source, is Gaussian with mean µ0,

variance σ2
µ, and precision 1

σ2
µ
, and when viewed as a data set consists of n0

(to be determined below) observations;

• The likelihood, considered as an information source, is Gaussian with

mean ȳ, variance
σ2
0

n
, and precision n

σ2
0

, and when viewed as a data set consists

of n observations;
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Conjugate Updating: Gaussian Inference About µ

• The posterior, considered as an information source, is Gaussian, and the

posterior mean is a weighted average of the prior mean and data mean, with

weights given by the prior and data precisions;

• The posterior precision (the reciprocal of the posterior variance) is just the

sum of the prior and data precisions (this is why people invented the idea of

precision — on this scale information about µ in model (75) is additive); and

• Rewriting µ∗ as

µ∗ =

(
1

σ2
µ

)
µ0 +

(
n

σ2
0

)
ȳ

1
σ2

µ
+ n

σ2
0

=

(
σ2
0

σ2
µ

)
µ0 + nȳ

σ2
0

σ2
µ

+ n
, (82)

you can see that the prior sample size is

n0 =
σ2

0

σ2
µ

=
1(

σµ

σ0

)2 , (83)

which makes sense: the bigger σµ is in relation to σ0, the less prior

information is being incorporated in the conjugate updating (82).
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Bayesian Inference with Multivariate θ

Bayesian inference with multivariate θ. Returning now to (73) with σ2

unknown, (as mentioned above) this model has a (k = 2)-dimensional

parameter vector θ = (µ, σ2).

When k > 1 you can still use Bayes’ Theorem directly to obtain the joint

posterior distribution,

p(θ|y) = p(µ, σ
2|y) = c p(θ) l(θ|y)

= c p(µ, σ
2) l(µ, σ

2|y), (84)

where y = (y1, . . . , yn), although making this calculation directly requires a

k-dimensional integration to evaluate the normalizing constant c; for example,

in this case

c = [p(y)]−1 =

(∫∫
p(µ, σ

2
, y) dµ dσ

2

)−1

=

(∫∫
p(µ, σ

2) l(µ, σ
2|y) dµ dσ

2

)−1

. (85)

Usually, however, you’ll be more interested in the marginal posterior

distributions, in this case p(µ|y) and p(σ2|y).
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Marginalization

Obtaining these requires k integrations, each of dimension (k − 1), a process

that people refer to as marginalization or integrating out the nuisance

parameters — for example,

p(µ|y) =

∫ ∞

0

p(µ, σ
2|y) dσ

2
. (86)

Predictive distributions also involve a k-dimensional integration: for example,

with y = (y1, . . . , yn),

p(yn+1|y) =

∫∫
p(yn+1, µ, σ

2|y) dµ dσ
2 (87)

=

∫∫
p(yn+1|µ, σ

2) p(µ, σ
2|y) dµ dσ

2
.

And, finally, if you’re interested in a function of the parameters, you have

some more hard integrations ahead of you.

For instance, suppose you wanted the posterior distribution for the coefficient

of variation λ = g1(µ, σ2) =
√

σ2

µ
in model (73).

Then one fairly direct way to get this posterior (e.g., Bernardo and Smith,

1994) is to (a) introduce a second function of the parameters, say
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The Integration Challenge

η = g2(µ, σ2), such that the mapping f = (g1, g2) from (µ, σ2) to (λ, η) is

invertible; (b) compute the joint posterior for (λ, η) through the usual

change-of-variables formula

p(λ, η|y) = pµ,σ2

[
f
−1(λ, η)|y

] ∣∣Jf−1(λ, η)
∣∣ , (88)

where pµ,σ2(·, ·|y) is the joint posterior for µ and σ2 and
∣∣Jf−1

∣∣ is the

determinant of the Jacobian of the inverse transformation; and (c)

marginalize in λ by integrating out η in p(λ, η|y), in a manner

analogous to (86).

Here, for instance, η = g2(µ, σ2) = µ would create an invertible f , with inverse

defined by (µ = η, σ2 = λ2η2); the Jacobian determinant comes out 2λη2

and (94) becomes p(λ, η|y) = 2λη2 pµ,σ2(η, λ2η2|y).

This process involves two integrations, one (of dimension k) to get the

normalizing constant that defines (88) and one (of dimension (k − 1)) to get rid

of η.

You can see that when k is a lot bigger than 2 all these integrals may create

severe computational problems — this has been the big stumbling block

for applied Bayesian work for a long time.
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Gaussian Modeling With Unknown µ and σ2

More than 200 years ago Laplace (1774) — the second applied Bayesian in

history (after Bayes himself) — developed, as one avenue of solution to this

problem, what people now call Laplace approximations to high-dimensional

integrals of the type arising in Bayesian calculations (see, e.g., Tierney and

Kadane, 1986).

Starting in the next case study after this one, we’ll use another,

computationally intensive, simulation-based approach: Markov chain

Monte Carlo (MCMC).

Back to model (73). The conjugate prior for θ =
(
µ, σ2

)
in this model (see

GCSR) turns out to be most simply described hierarchically:

σ
2 ∼ SI-χ2(ν0, σ

2
0)

(µ|σ2) ∼ N

(
µ0,

σ2

κ0

)
. (89)

Here saying that σ2 ∼ SI-χ2(ν0, σ
2
0), where SI stands for scaled inverse,

amounts to saying that the precision τ = 1
σ2 follows a scaled χ2 distribution

with parameters ν0 and σ2
0 .
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Gaussian Modeling With Unknown µ and σ2 (continued)

The scaling is chosen so that σ2
0 can be interpreted as a prior estimate of σ2,

with ν0 the prior sample size of this estimate (i.e., think of a prior data

set with ν0 observations and sample SD σ0).

Since χ2 is a special case of the Gamma distribution, SI-χ2 must be a special

case of the inverse Gamma family — its density (see GCSR, Appendix A) is

σ
2 ∼ SI-χ2(ν0, σ

2
0) ↔ (90)

p(σ2) =

(
1
2
ν0

) 1
2

ν0

Γ
(

1
2
ν0

) (
σ

2
0

) 1
2

ν0
(
σ

2)−(1+ 1
2

ν0)
exp

(
−ν0 σ2

0

2σ2

)
.

As may be verified with Maple, this distribution has mean (provided that

ν0 > 2) and variance (provided that ν0 > 4) given by

E
(
σ

2) =
ν0

ν0 − 2
σ

2
0 and V

(
σ

2) =
2ν2

0

(ν0 − 2)2(ν0 − 4)
σ

4
0 . (91)

The parameters µ0 and κ0 in the second level of the prior model (89),

(µ|σ2) ∼ N
(
µ0,

σ2

κ0

)
, have simple parallel interpretations to those of σ2

0

and ν0: µ0 is the prior estimate of µ, and κ0 is the prior effective sample

size of this estimate.
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Bivariate Gaussian Likelihood

The likelihood function in model (73), with both µ and σ2 unknown, is

l(µ, σ
2|y) = c

n∏

i=1

1√
2πσ2

exp

[
− 1

2σ2
(yi − µ)2

]

= c
(
σ

2)− 1
2

n
exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2
]

(92)

= c
(
σ

2)− 1
2

n
exp

[
− 1

2σ2

(
n∑

i=1

y
2
i − 2µ

n∑

i=1

yi + nµ
2

)]
.

The expression in brackets in the last line of (92) is

[ · ] = − 1

2σ2

[
n∑

i=1

y
2
i + n(µ − ȳ)2 − nȳ

2

]
(93)

= − 1

2σ2

[
n(µ − ȳ)2 + (n − 1)s2]

,

where s2 = 1
n−1

∑n

i=1 (yi − ȳ)2 is the sample variance. Thus

l(µ, σ
2|y) = c

(
σ

2)− 1
2

n
exp

{
− 1

2σ2

[
n(µ − ȳ)2 + (n − 1)s2]

}
, (94)
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Bivariate Gaussian Likelihood (continued)

and it’s clear that the vector
(
ȳ, s2

)
is sufficient for θ =

(
µ, σ2

)
in this model,

i.e., l(µ, σ2|y) = l(µ, σ2|ȳ, s2).

Maple can be used to make 3D and contour plots of this likelihood function

with the NB10 data:

> l := ( mu, sigma2, ybar, s2, n ) -> sigma2^( - n / 2 ) *

exp( - ( n * ( mu - ybar )^2 + ( n - 1 ) * s2 ) / ( 2 * sigma2 ) );

l := (mu, sigma2, ybar, s2, n) ->

2

(- 1/2 n) n (mu - ybar) + (n - 1) s2

sigma2 exp(- 1/2 ---------------------------)

sigma2

> plot3d( l( mu, sigma2, 404.6, 42.25, 100 ), mu = 402.6 .. 406.6,

sigma2 = 25 .. 70 );

The result (next page) looks something like a bivariate normal density except

that it’s skewed along the σ2 dimension:
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Bivariate Gaussian Likelihood (continued)
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Bivariate Gaussian Likelihood (continued)

You can use the mouse to rotate 3D plots and get

other useful views of them:

403404405406
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0
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1.4e–103

1.6e–103

The projection or shadow plot of µ (left) looks a lot like a normal (or

maybe a t) distribution, and the shadow plot of σ2 (right) looks a lot like a

Gamma (or maybe an inverse Gamma) distribution.
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Bivariate Gaussian Likelihood (continued)

> plots[ contourplot ]( 10^100 * l( mu, sigma2, 404.6, 42.25, 100 ),

mu = 402.6 .. 406.6, sigma2 = 25 .. 70, color = black );

35

40

45

50

55

sigma2

403.5 404 404.5 405 405.5
mu

The contour plot shows that µ and σ2 are uncorrelated in the likelihood

distribution, and the skewness of the marginal distribution of σ2 is

also evident.
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Gaussian Inferential Analysis

Inferential analysis. Having adopted the conjugate prior (89), what I’d

like next is simple expressions for the marginal posterior distributions

p(µ|y) and p(σ2|y) and for predictive distributions like p(yn+1|y).

Fortunately, in model (73) all of the integrations (such as (86) and (87)) may

be done analytically (see, e.g., Bernardo and Smith 1994), yielding the

following results:

(σ2|y, G) ∼ SI-χ2(νn, σ
2
n),

(µ|y, G) ∼ tνn

(
µn,

σ2
n

κn

)
, and (95)

(yn+1|y, G) ∼ tνn

(
µn,

κn + 1

κn

σ
2
n

)
.

In the above expressions

νn = ν0 + n,

σ
2
n =

1

νn

[
ν0σ

2
0 + (n − 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)

2

]
,
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Gaussian Inferential Analysis (continued)

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ, and (96)

κn = κ0 + n,

ȳ and s2 are the usual sample mean and variance of y, and G denotes the

assumption of the Gaussian model.

Here tν(µ, σ2) is a location-scale version of the usual tν distribution, i.e.,

W ∼ tν(µ, σ2) ⇐⇒ W−µ

σ
∼ tν .

This distribution (see GCSR, Appendix A) has density

η ∼ tν(µ, σ
2) ↔ p(η) =

Γ
[

1
2
(ν + 1)

]

Γ
(

1
2
ν
)√

νπσ2

[
1 +

1

νσ2
(η − µ)2

]− 1
2
(ν+1)

. (97)

It turns out that tν(µ, σ2) has mean µ (as long as ν > 1) and variance ν
ν−2

σ2

(as long as ν > 2).

Notice that, as with all previous conjugate examples, the posterior mean is

again a weighted average of the prior mean and data mean, with weights

determined by the prior sample size and the data sample size:
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NB10 Gaussian Analysis

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ. (98)

NB10 Gaussian Analysis. Question (a): I don’t know anything about

what NB10 is supposed to weigh (down to the nearest microgram) or about the

accuracy of the NBS’s measurement process, so I want to use a diffuse prior

for µ and σ2.

Considering the meaning of the hyperparameters, to provide little prior

information I want to choose both ν0 and κ0 close to 0.

Making them exactly 0 would produce an improper prior distribution (which

doesn’t integrate to 1), but choosing positive values as close to 0 as you like

yields a proper and highly diffuse prior.

You can see from (95, 96) that the result is then

(µ|y, G) ∼ tn

[
ȳ,

(n − 1)s2

n2

]
.
= N

(
ȳ,

s2

n

)
, (99)

i.e., with diffuse prior information (as with the Bernoulli model in the AMI case

study) the 95% central Bayesian interval virtually coincides with the usual
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NB10 Gaussian Analysis (continued)

frequentist 95% confidence interval

ȳ ± t.975n−1
s√
n

= 404.6 ± (1.98)(0.647) = (403.3, 405.9).

Thus both {frequentists who assume G} and {Bayesians who assume G with a

diffuse prior} conclude that NB10 weighs about 404.6µg below 10g, give

or take about 0.65µg.

Question (b). If interest focuses on whether NB10 weighs less than some

value like 405.25, when reasoning in a Bayesian way you can answer this

question directly: the posterior distribution for µ is shown below, and

PB(µ < 405.25|y,G,diffuse prior)
.
= .85, i.e., your betting odds in favor of the

proposition that µ < 405.25 are about 5.5 to 1 (see graph next page).

When reasoning in a frequentist way PF (µ < 405.25) is undefined; about the

best you can do is to test H0 : µ < 405.25, for which the p-value would

(approximately) be p = PF,µ=405.25(ȳ > 404.6) = .85, i.e., “insufficient

evidence to reject H0 at the usual significance levels” (note the

connection between the p-value and the posterior probability, which arises in

this example because the null hypothesis is one-sided).
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NB10 Gaussian Analysis (continued)

Weight of NB10
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NB The significance test tries to answer a different question: in Bayesian

language it looks at P (ȳ|µ) instead of P (µ|ȳ).

Most people find the latter quantity more interpretable.

Question (c). We saw earlier that in this model

(yn+1|y, G) ∼ tνn

[
µn,

κn + 1

κn

σ
2
n

]
, (100)
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NB10 Gaussian Analysis (continued)

and for n large and ν0 and κ0 close to 0 this is (yn+1|y, G)
·∼ N(ȳ, s2), i.e., a

95% posterior predictive interval for yn+1 is (392, 418).

A standardized version of this predictive distribution is plotted below, with

the standardized NB10 data values superimposed.
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Predictive Diagnostics; Model Expansion

It’s evident from this plot (and also from the normal qqplot given earlier) that

the Gaussian model provides a poor fit for these data — the three most

extreme points in the data set in standard units are −4.6, 2.8, and 5.0.

With the symmetric heavy tails indicated in these plots, in fact, the

empirical CDF looks quite a bit like that of a t distribution with a rather small

number of degrees of freedom.

This suggests revising the previous model by expanding it: embedding the

Gaussian in the t family and adding a parameter ν for tail-weight.

This is an example of an important Bayesian idea — model expansion: (a)

finding out how the current model M is inadequate and (b) embedding M in a

richer class of models M of which M is a special case, where M is chosen to

remedy the deficiencies of M revealed in (a).

Unfortunately there’s no standard closed-form conjugate choice for the prior

on ν.

A more flexible approach to computing is evidently needed — this is where

Markov chain Monte Carlo methods (our next main topic) come in.
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2.10 The Exponential Family

In our examples of conjugate analysis so far, we worked out the form of the

conjugate prior just by looking at the likelihood function.

This works in simple problems, but it would be nice to have a general way of

figuring out what the conjugate prior has to be (if it exists) once the likelihood

is specified.

It was noticed a long time ago that many of the standard sampling

distributions that you’re likely to want to use in constructing likelihood

functions in parametric Bayesian modeling have the same general form,

which is referred to as the exponential family .

I bring this up here because there’s a simple theorem that specifies the

conjugate prior for likelihoods that belong to the exponential family.

Definition (e.g., Bernardo and Smith, 1994): Given data y1 (a sample of size

1) and a parameter vector θ = (θ1, . . . , θk), the (marginal) sampling

distribution p(y1|θ) belongs to the k-dimensional exponential family if it

can be expressed in the form

p(y1|θ) = f1(y1) g1(θ) exp

[
k∑

j=1

φj(θ) hj(y1)

]
(101)
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Exponential Family (continued)

for y1 ∈ Y and 0 otherwise; if Y doesn’t depend on θ

the family is called regular.

The vector [φ1(θ), . . . , φk(θ)] in (101) is called the natural parameterization

of the exponential family.

When any single observation (e.g., y1) has a sampling distribution of the form

(101), the joint distribution p(y|θ) of a sample y = (y1, . . . , yn) of size n

that’s conditionally IID from (101) (which also defines, as usual, the likelihood

function l(θ|y)) will be

p(y|θ) = l(θ|y) = c

n∏

i=1

p(yi|θ)

= c

[
n∏

i=1

f1(yi)

]
[g1(θ)]

n exp

[
k∑

j=1

φj(θ)

n∑

i=1

hj(yi)

]
.

This leads to another way to define the exponential family: in (101) take

f(y) =
∏n

i=1 f1(yi) and g(θ) = [g1(θ)]
n to yield

Definition: Given data y = (y1, . . . , yn) (a conditionally IID sample of size n)
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Exponential Family (continued)

and a parameter vector θ = (θ1, . . . , θk), the (joint) sampling distribution p(y|θ)
belongs to the k-dimensional exponential family if it can be expressed in

the form

p(y|θ) = f(y) g(θ) exp

[
k∑

j=1

φj(θ)
n∑

i=1

hj(yi)

]
. (102)

Either way you can see that {
∑n

i=1 h1(yi), . . . ,
∑n

i=1 hk(yi)} is a set of

sufficient statistics for θ under this sampling model, because the likelihood

l(θ|y) depends on y only through the values of {h1, . . . , hk}.

Now here’s the theorem about the conjugate prior: if the likelihood l(θ|y)

is of the form (102), then in searching for a conjugate prior p(θ) — that is, a

prior of the same functional form as the likelihood — you can see directly what

will work:

p(θ) = c g(θ)τ0 exp

[
k∑

j=1

φj(θ) τj

]
, (103)

for some τ = (τ0, . . . , τk).
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Exponential Family (continued)

With this choice the posterior for θ will be

p(θ|y) = c f(y) g(θ)1+τ0 exp

{
k∑

j=1

φj(θ)

[
τj +

n∑

i=1

hj(y)

]}
, (104)

which is indeed of the same form (in θ) as (102).

Example (1) With s =
∑n

i=1 yi, recall that the Bernoulli/binomial

likelihood can be written

l(θ|y) = c θ
s(1 − θ)n−s

= c (1 − θ)n

(
θ

1 − θ

)s

(105)

= c (1 − θ)n exp

[
s log

(
θ

1 − θ

)]
,

which shows (a) that this sampling distribution is a member of the

exponential family with k = 1, g(θ) = (1 − θ)n, φ1(θ) = log
(

θ
1−θ

)
(NB the

natural parameterization, and the basis of logistic regression), and

h1(yi) = yi, and (b) that
∑n

i=1 h1(yi) = s is sufficient for θ.
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Exponential Family (continued)

Then (103) says that the conjugate prior for the Bernoulli/binomial

likelihood is

p(θ) = c (1 − θ)nτ0 exp

[
τ1 log

(
θ

1 − θ

)]

= c θ
α−1(1 − θ)β−1 = Beta(α, β) (106)

for some α and β, as we’ve already seen is true.

Example (2) For a setting with k > 1, take θ = (µ, σ2) with the

Gaussian likelihood:

l(θ|y) =

n∏

i=1

1

σ
√

2π
exp

[
− 1

2σ2
(yi − µ)2

]
(107)

= c
(
σ

2)− n
2 exp

[
− 1

2σ2

(
n∑

i=1

y
2
i − 2µ

n∑

i=1

yi + nµ
2

)]
.

This is of the form (102) with k = 2, f(y) = 1, g(θ) =(
σ2
)− n

2 exp
(
−nµ2

2σ2

)
, φ1(θ) = − 1

2σ2 , φ2(θ) = µ

σ2 , h1(yi) = y2
i , and h2(yi) = yi,

which shows that [h1(y) =
∑n

i=1 y2
i , h2(y) =

∑n

i=1 yi] or equivalently (ȳ, s2) is
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Exponential Family (continued)

sufficient for θ.

Some unpleasant algebra then demonstrates that an application of the

conjugate prior theorem (54) in the exponential family leads to (95) as the

conjugate prior for the Gaussian likelihood when both µ and σ2 are unknown.

Example (3) An example of a non-regular exponential family: suppose

(as in the case study in homework 3 problem 2) that a reasonable model for the

data is to take the observed values (yi|θ) to be conditionally IID from the

uniform distribution U(0, θ) on the interval (0, θ) for unknown θ:

p(y1|θ) =





1
θ

for 0 < y1 < θ

0 otherwise



 =

1

θ
I(0, θ), (108)

where I(A) = 1 if A is true and 0 otherwise.

θ in this model is called a range-restriction parameter; such parameters are

fundamentally different from location and scale parameters (like the mean µ

and variance σ2 in the N(µ, σ2) model, respectively) or shape parameters (like

the degrees of freedom ν in the tν model).
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Pros and Cons of Maximum Likelihood

(108) is an example of (102) with c = 1, f1(y) = 1, g1(θ) = 1
θ
, h1(y) = 0, and

φ1(θ) = anything you want (e.g., 1), but only when the set Y = (0, θ) is taken to

depend on θ.

Truncated distributions with unknown truncation point(s) also lead to

non-regular exponential families; an example would be if You needed to model

Your data as like random draws from a (rescaled) N(µ, σ2) distribution forced

to live not on (−∞,∞) but on (A, B) with at least one of A and B unknown.

As you’ll see in homework 3, inference in non-regular exponential families is

similar in some respects to the story when the exponential family is regular,

but there are some important differences too.

2.11 Pros and cons of maximum likelihood. Strength of maximum

likelihood as an approach to parametric inference:

• Fisher’s approach extends readily to situations in which the parameter θ is a

vector of length k > 1:

— The log likelihood ll(θ|y) is now a function of the k values (θ1, . . . , θk) for

fixed data vector y; in regular problems (in which the maximum occurs in the
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Pros and Cons of Maximum Likelihood (continued)

interior of the parameter space) the MLE can be found by

(a) creating a system of k equations in k unknowns, by setting the (first)

partial derivatives ∂
∂θj

ll(θ|y) equal to 0, and

(b) solving this system, either analytically or numerically.

Example: With a conditionally IID Gaussian sampling distribution

for yi in which the data-generating mean µ and variance σ2 are both

unknown, from equation (94) above the likelihood is

l(µ, σ
2|y) = c

(
σ

2)− 1
2

n
exp

{
− 1

2σ2

[
n(µ − ȳ)2 + (n − 1)s2]

}
, (109)

and the log likelihood is then evidently

ll(µ, σ
2|y) = c − n log σ − 1

2σ2

[
n(µ − ȳ)2 + (n − 1)s2]

. (110)

Q: If I find the MLE of γ = σ2 in this model and you find the MLE of

η = σ, how should these two estimates be related?

It would be nice if γ̂MLE = (η̂MLE)2; is this true?
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Pros and Cons of Maximum Likelihood (continued)

To write the log likelihood in the γ parameterization, I just put γ

wherever I see σ2:

ll(µ, γ|y) = c − n

2
log γ − 1

2γ

[
n(µ − ȳ)2 + (n − 1)s2] ; (111)

similarly, to write the log likelihood in the η parameterization, I just put η

wherever I see σ:

ll(µ, η|y) = c − n log η − 1

2η2

[
n(µ − ȳ)2 + (n − 1)s2]

. (112)

The system of k = 2 equations in µ and γ is then




∂
∂µ

ll(µ, γ|y) = − 1
γ
n (µ − ȳ) = 0

∂
∂γ

ll(µ, γ|y) = − n
2γ

+ 1
2γ2

[
n(µ − ȳ)2 + (n − 1)s2

]
= 0



 , (113)

and this has the solution
{

µ = µ̂MLE = ȳ, γ = γ̂MLE = σ̂2
MLE =

1

n

n∑

i=1

(yi − ȳ)2
}

. (114)
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Pros and Cons of Maximum Likelihood (continued)

Similarly, the system of k = 2 equations in µ and η is then




∂
∂µ

ll(µ, η|y) = − 1
η2 n (µ − ȳ) = 0

∂
∂η

ll(µ, η|y) = −n
η

+ 1
η3

[
n(µ − ȳ)2 + (n − 1)s2

]
= 0



 , (115)

and this has the solution


µ = µ̂MLE = ȳ, η = η̂MLE = σ̂MLE =

√√√√ 1

n

n∑

i=1

(yi − ȳ)2



 . (116)

So the answer to the question above is nice: you get the same estimate of µ

either way, and σ̂2
MLE = (σ̂MLE)2.

This is an example of a general property, of both the MLE and the

posterior mode, called functional invariance: the simplest special case

of this property to state says that if g(·) is invertible then ĝ(θ)
MLE

= g
(
θ̂MLE

)

(there’s a more general version of functional invariance of the MLE for all

functions g (not just the invertible ones), but it requires the idea of profile

likelihood, which is not important for Bayesian work).
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Pros and Cons of Maximum Likelihood (continued)

— The one-dimensional large-sample result we looked at earlier,

θ̂MLE

·∼ N
[
θ, Î

−1
(
θ̂MLE

)]
, (117)

generalizes with k ≥ 1 to

θ̂MLE

·∼ Nk

[
θ, Î

−1
(
θ̂MLE

)]
, (118)

in which Nk(µ, Σ) is the multivariate normal distribution, in k dimensions, with

mean vector µ and covariance matrix Σ; here the analogue of Î in the

one-dimensional result is a matrix (minus the Hessian [matrix of second

partial derivatives] of the log likelihood, evaluated at the MLE) and what

used to be the reciprocal operation in Î−1 when k = 1 is now matrix inversion.

Example (continued): Carrying on with the parameterization γ = σ2, the

second partial derivatives are

∂2

∂µ2 ll(µ, γ|y) = −n
γ

, ∂2

∂µ ∂γ
ll(µ, γ|y) = n

γ2 (µ − ȳ) and

∂2

∂γ2 ll(µ, γ|y) = n
2 γ2 − 1

γ3

[
n(µ − ȳ)2 + (n − 1)s2

]
,

(119)
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Pros and Cons of Maximum Likelihood (continued)

so the information matrix is

Î = −




∂2

∂µ2 ll(µ, γ|y) ∂2

∂µ ∂γ
ll(µ, γ|y)

∂2

∂µ ∂γ
ll(µ, γ|y) ∂2

∂γ2 ll(µ, γ|y)




µ=µ̂,γ=γ̂

=




n
γ̂

0

0 n
2 γ̂2


 (120)

and the large-sample estimated covariance matrix of the MLE vector

θ̂ = (µ̂, γ̂) (in repeated sampling) is then

V̂
(
θ̂
)

.
= Î

−1 =




γ̂

n
0

0 2 γ̂2

n


 . (121)

What this means is that

(a) the repeated-sampling variance of µ̂ = ȳ is estimated to be

V̂ (µ̂) = V̂ (ȳ)
.
= γ̂

n
= σ̂2

n
= (n−1)s2

n2 (where s2 = 1
n−1

∑n

i=1(yi − ȳ)2 is the usual

repeated-sampling-unbiased sample variance) — note that in fact V (ȳ) = σ2

n
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Pros and Cons of Maximum Likelihood (continued)

and E
[

(n−1)s2

n2

]
= σ2

n
− σ2

n2 , so that the bias in Fisher’s answer is quite small

(O
(

1
n2

)
; Fisher’s theory does not lead to good interval estimates for µ in

small samples [it pretends that the distribution of ȳ−µ

σ̂
is Gaussian when

it’s actually scaled t], but the t approaches the Gaussian as n increases);

(b) the repeated-sampling covariance Ĉ (µ̂, γ̂) between µ̂ and σ̂2 is

estimated to be 0 — this is also approximately correct (it turns out that ȳ

and s2 are independent, and therefore uncorrelated, in the Gaussian

sampling model); and

(c) the repeated-sampling variance of γ̂ = σ̂2 is estimated to be

V̂ (γ̂) = 2 γ̂2

n
= 2 σ̂4

n
— this is also approximately correct (in repeated sampling

in this model σ̂2 ∼ σ2χ2
n−1

n
, so that V

(
σ̂2
)

= 2(n−1)σ4

n2

.
= 2σ4

n
; Fisher’s theory

again does not lead to good interval estimates for σ2 in small samples [it

pretends that the distribution of σ̂2 is Gaussian when it’s actually scaled

χ2], but again the χ2 approaches the Gaussian as n increases).

The bottom line is that maximum likelihood is a successful general

approach to parametric inference when the sample size n is large and
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Pros and Cons of Maximum Likelihood (continued)

little or no relevant information, about the unknown θ, external to

the data set y is available (in this case maximum likelihood and Bayesian

inferential conclusions will tend to be similar).

Disadvantages of maximum likelihood in relation to Bayesian inference

(this will become clear as we go along):

• With small samples sizes, when the likelihood function l(θ|y) is skewed

(e.g., often in hierarchical models [more on this later]), maximization over

θ is not the best technology for learning about θ; the Bayesian approach,

which treats the likelihood as if it were a density, substitutes integration for

maximization over θ, and this has been found to have better

repeated-sampling properties (with diffuse priors) when n is small.

• The frequentist approach encourages thinking of each data set in isolation;

the Bayesian approach explicitly provides a mechanism for combining

information from multiple sources.

• Prediction of observables — an activity of central importance in

science/statistics for its role in model-checking — is much easier from

the Bayesian point of view.
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