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The Big Picture, Again

The ingredients in a Bayesian statistical modeling
problem are as follows:

• θ, something unknown to me (often this is a vector of
real numbers of length k ≥ 1 — in which case I’m doing

Bayesian parametric modeling, which is the focus of this
class — but it could be just about anything);

• y, some information (data) that I judge relevant to
decreasing my uncertainty about θ (often this is a vector
y = (y1, . . . , yn) of length n, in which each yi is itself a vector
of real numbers of length d ≥ 1 — which is the focus of this
class — but again it could be just about anything); and

• a desire to summarize my uncertainty about θ, on the
basis of information both internal to and external to y, in
a way that’s internally (logically) consistent (coherent).

Then it’s not just a choice, it’s a theorem, that

• I need to quantify my uncertainty about θ through three
conditional probability distributions (i.e., to use the

machinery that arises by treating θ as a random variable
even though its logical status is that of a

fixed unknown constant):

— the prior distribution p(θ|B), which summarizes my
information about θ external to the data set y, on the basis
of my background assumptions and judgments B about

how the world works as far as θ is concerned;

— the likelihood distribution l(θ|y,B) = c p(y|θ,B), obtained
by density-normalizing, with the positive constant c, my
prior conditional predictive distribution p(y|θ,B) (also
known as my sampling distribution) for y given θ and B,

and

— the posterior distribution p(θ|y,B), which summarizes
my information about θ both external and internal to the

data set y, given B; and
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The Specification Problem, Revisited

• To avoid internal logical inconsistencies (incoherence),
these distributions must be related, via Bayes’s Theorem,

as follows:

p(θ|y,B) = c p(θ|B) l(θ|y,B). (1)

Let’s agree to call {p(θ|B), l(θ|y,B)} (together) the Bayesian
(parametric) model M ; and from now on I’ll usually

suppress B for notational convenience (but we need to
remember that it’s still there).

OK, so now I know what to do, but:

• How do I specify p(θ) “well”?

• How do I specify l(θ|y) (or equivalently p(y|θ)) “well”?

• What does “well” mean?

Believe it or not, choosing a reasonable meaning of “well”
and making it operational are still active areas of

Bayesian research.

As we’ve seen, judgments of conditional exchangeability
(based on the science of the problem, i.e., part of B) help a

lot with the likelihood/sampling distribution, but (as
we’ve also seen) these judgments don’t uniquely pin down

a single sampling model except with categorical
multinomial data (of which Bernoulli outcomes are a

special case) or quantitative data (if you’re willing to go
directly to Bayesian nonparametric modeling, and this is

beyond the scope of this class: AMS 241).

In my view this is where the other of the two basic
principles governing good Bayesian modeling

(coherence + ) comes in:

I also want my Bayesian answers to be externally
consistent (in the usual calibration sense of comparing

how often I get the right answer with how often I say
I’ll get the right answer).

3



Coherence + Calibration

As I’ve discussed in my 7 Dec 2009 talk (on the course
website), I see only three ways to pay the right price, in a
calibration sense, for my uncertainty about how to specify

my Bayesian model:

• Bayesian nonparametrics (BNP; in my view the most
satisfying solution of all, but beyond the scope of

this class);

• Bayesian model averaging (BMA): if I’m unsure about
how to specify M , I collect all of the reasonable possibilities

together into a set of models M and sum or integrate
hierarchically over M to quantify my specification

uncertainty: for example, with finite M = {M1, . . . ,Mm} and
a quantity ∆ whose meaning is common to all these

models (e.g., the next data value yn+1),

p(∆|y,M) =

m
∑

j=1

p(∆|y,Mj,M) p(Mj|y,M); (2)

here what this (sensibly) says to do is to take a weighted
average of my conditional predictive distributions

p(∆|y,Mj,M), weighted by their
posterior probabilities p(Mj|y,M).

I view BMA as a parametric approximation to BNP:

• 3CV: As described in my 7 Dec 2009 talk, if I pay the
right price for using the data to guide a search for
“good” models, I can still achieve good calibration.
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The Two Questions

Let’s postpone details of how to do 3CV til later and focus
now on how Bayesians might search for good models.

Such a search would need four ingredients:

(1) A starting point, say M0 = Mold;

(2) A way to suggest another model Mnew that
might be better;

(3) A way to answer the question “Is Mnew better than
Mold?” (this is model comparison); and

(4) A stopping rule.

With these ingredients I can start at (1), go to (2) and
then (3); if Mnew is better, set the current best model to
Mnew and go back to (2); if Mnew is not better, keep the
current best model at Mold and go back to (2); when my
reservoir of {time, money, ingenuity} runs out, take the
current best model M ∗ and make (4) operational by

answering the question “Is M ∗ good enough?”

(When I’m done with this search, nothing says I have to
move forward just with the best model I’ve found; I
could keep track of all of the good models discovered

and use BMA.)

As I argue in my 7 Dec 2009 talk, the two questions “Is
Mnew better than Mold?” and “Is M∗ good enough?” are

not yet well-posed:

better than/good enough for what purpose?

Specifying the purpose of my modeling transforms the
problem from inference to decision-making: in my view
fully satisfying answers to these questions require (a)
specifying a utility function that quantifies my value
judgments among good and bad possibilities and (b)

maximizing expected utility to choose a model (this is also
beyond the scope of this course: AMS 221).
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M2 Versus M1

(See the example with Fouskakis in my 7 Dec 2009 talk
for a fully-worked-out case study of model specification

via decision theory.)

However, the decision-theoretic approach is hard work,
and it’s not always clear what the end-use of the

modeling exercise will be; it would be good to have a
rather general-purpose utility-based way to decide if M2 is

better than M1; here are two ideas along these lines.

Idea 1: Why not base the choice on
posterior model probabilities?

By Bayes’s Theorem in odds form,

p(M2|y)

p(M1|y)
=

[

p(M2)

p(M1)

]

·

[

p(y|M2)

p(y|M1)

]

; (3)

the first term on the right is just the prior odds in favor of
M2 over M1, and the second term on the right is called the

Bayes factor, so in words equation (3) says






posterior
odds
for M2

over M1






=





prior odds
for M2

over M1



 ·





Bayes factor
for M2

over M1



 . (4)

Odds o are related to probabilities p via o = p

1−p
and

p = o
1+o

; these are monotone increasing transformations,

so the decision rules {choose M2 over M1 if the posterior
odds for M2 are greater} and {choose M2 over M1 if

P(M2|y) > P(M1|y)} are equivalent.

This approach does have a decision-theoretic basis, but
it’s rather odd: if you pretend that the only possible

data-generating mechanisms are M = {M1, . . . ,Mm} for
finite m, and you pretend that one of the models in M must
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Bayes Factors
be the true data-generating mechanism, and you pretend

that the utility function

U(a) =

{

1 if your choice of model a is correct
0 otherwise

}

(5)

reflects your real-world values, then it’s
decision-theoretically optimal to choose the model in M
with the highest posterior probability (i.e., that choice

maximizes expected utility).

If it’s scientifically appropriate to take the prior model
probabilities p(Mj) to be equal, this rule reduces to

choosing the model with the highest Bayes factor in
favor of it; this can be found by (a) computing the Bayes

factor in favor of M2 over M1,

BF(M2 over M1|y) = BF(M2|y) =
p(y|M2)

p(y|M1)
, (6)

favoring M2 if BF(M2|y) > 1, i.e., if p(y|M2) > p(y|M1), and
calling the better model M ∗; (b) computing the Bayes

factor in favor of M ∗ over M3, calling the better model M ∗;
and so on up through Mm.

Notice that there’s something else a bit funny about this:

p(y|Mj) is the prior (not posterior) predictive

distribution for the data set y under model Mj, so the
Bayes factor rule tells us to choose the model that does

a better job of predicting the data
before any data arrives.

Example. When you come upon a new concept, it’s a

good idea to play with it in a simple setting where you’re
pretty sure you know the right answer, to see if the new
concept gives you back known truth; in that spirit, let’s
look at one of the simplest possible inferential settings:

for j = 1,2 and i = 1, . . . , n

(yi|µj,Mj)
IID
∼ N(µj, σ

2) for known µj and σ2. (7)
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Bayes Factors (continued)

We can immediately reduce by sufficiency to the
equivalent models

(ȳ|µj,Mj) ∼ N

(

µj,
σ2

n

)

where ȳ =
1

n

n
∑

i=1

yi; (8)

in other words, the two models agree on the Gaussian
sampling story and the variance but disagree on the

(underlying data-generating) mean.

Intuition says that you should favor the model for which ȳ
and µj are closest; let’s compute the Bayes factor and see

if it agrees:

p(y|Mj) = p(ȳ|Mj) =
1

√

2πσ2

n

exp
[

−
n

2σ2
(ȳ − µj)

2
]

, so

BF(M2|y) =

1
√

2π σ2

n

exp
[

− n
2σ2(ȳ − µ2)

2
]

1
√

2π σ2

n

exp
[

− n
2σ2(ȳ − µ1)2

] (9)

= exp
{

−
n

2σ2

[

(ȳ − µ2)
2 − (ȳ − µ1)

2
]

}

,

and this is greater than 1 (i.e., we should favor M2) iff
(ȳ − µ2)

2 < (ȳ − µ1)
2, as intuition suggested.

OK so far, but now let’s look at the general problem of
parametric model comparison, in which model Mj has its
own parameter vector θj (of length kj) and is specified by

Mj:

{

(θj|Mj) ∼ p(θj|Mj)
(y|θj,Mj) ∼ p(y|θj,Mj)

}

, (10)

for y = (y1, . . . , yn).
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Bayes Factors (continued)

Here the quantity p(y|Mj) that defines the Bayes factor is

p(y|Mj) =

∫

p(y|θj,Mj) p(θj|Mj) dθj; (11)

this is called an integrated likelihood (or marginal
likelihood) because it tells us to take a weighted average
of the sampling distribution/likelihood p(y|θj,Mj), but

NB weighed by the prior for θj in model Mj; as noted
above, this may seem surprising, but it’s correct, and it can

lead to trouble, as follows.

The first trouble is technical: the integral in (11) can be
difficult to compute, and may not even be much fun to

approximate (more on this below).

The second thing to notice is that (11) can be rewritten as

p(y|Mj) = E(θj|Mj) p(y|θj,Mj). (12)

In other words the integrated likelihood is the expectation

of the sampling distribution over the prior for θj in model

Mj (evaluated at the observed data y); in other words, if
scientific context suggests that p(θj|Mj) is diffuse, this

expectation can be unstable with respect to small details in
how the diffuseness is specified.

This can be seen directly by trying to approximate (12)
via Monte Carlo: the expectation suggests that we (a)
pick some large number N , (b) make N IID draws θ∗ij from

the prior p(θj|Mj), and (c) compute

p(y|Mj)
.
=

1

N

N
∑

i=1

p(y|θ∗ij,Mj). (13)

Imagine trying to do this with (e.g.) a Γ(ε, ε) prior on a
parameter living on (0,∞), and think about how unstable

the result would be.
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Instability of Bayes Factors

Example: Gaussian sampling model with known mean µ

and unknown variance:

Mj:

{

(σ2
j |Mj) ∼ Γ(ε, ε)

(yi|σ2
j ,Mj)

IID
∼ N(µ, σ2

j ), i = 1, . . . , n

}

. (14)

In this model

p(y|σ2
j ,Mj) =

n
∏

i=1

1
√

2πσ2
j

exp

[

−
1

2σ2
j

(yi − µ)2

]

(15)

= (2π)−
n

2

(

σ2
j

)−n

2 exp

[

−
1

2σ2
j

n
∑

i=1

(yi − µ)2

]

.

Unfortunately, the Γ(ε, ε) prior puts so much of its mass
near 0 that about 47% of the draws from it are regarded by

R as exactly equal to 0:

epsilon <- 0.001

M <- 100000

sigma.star2 <- rgamma( M, epsilon, epsilon )

sum( sigma.star2 == 0 ) / M

[1] 0.47424

So the Monte Carlo approximation to p(y|Mj) in equation
(13) will fail with the Γ(ε, ε) prior unless it’s modified to be

bounded away from 0; why not try a
Uniform(ε, A) prior instead?

mu <- 0

n <- 10

y <- rnorm( n, mu, 1 )

s <- sum( ( y - mu )^2 )
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Instability of Bayes Factors

M <- 100000

sensitivity <- function( M, epsilon, A, n, s ) {

sigma2.star <- runif( M, epsilon, A )

sampling.distribution <- ( 2 * pi )^( - n / 2 ) *

sigma2.star^( - n / 2 ) * exp( - s / ( 2 * sigma2.star ) )

return( c( mean( sampling.distribution) ) )

}

sensitivity( M, 0.001, 5, n, s )

[1] 5.068015e-07

sensitivity( M, 0.01, 5, n, s )

[1] 5.08333e-07

sensitivity( M, 0.1, 5, n, s )

[1] 5.16355e-07

OK, that’s good: with the Uniform(ε, A) prior the Monte
Carlo approximation to p(y|σ2

j ,Mj) is not sensitive to ε;
what about A?

sensitivity( M, 0.001, 5, n, s )

[1] 5.053105e-07

sensitivity( M, 0.001, 10, n, s )

[1] 2.529732e-07

sensitivity( M, 0.001, 15, n, s )

[1] 1.695316e-07

sensitivity( M, 0.001, 50, n, s )

[1] 5.134128e-08

sensitivity( M, 0.001, 500, n, s )

[1] 4.911668e-09
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Instability of Bayes Factors

With A the news is not good: as A increases the apparent
plausibility of the same data under the same model goes
down; in fact, if A is increased by a factor of 10, p(y|σ2

j ,Mj)
goes down by approximately the same factor of 10; and

remember: A is not a number that comes from the
science of the problem (we haven’t even seen

any data yet).

Example: Integer-valued data y = (y1, . . . , yn);

M1 = Geometric(θ1) likelihood with Beta(α1, β1) prior on θ1;

M2 = Poisson(θ2) likelihood with Gamma(α2, β2) prior
on θ2.

The Bayes factor in favor of M1 over M2 turns out to be

Γ(α1 + β1)Γ(n+ α1)Γ(nȳ + β1)Γ(α2)(n+ β2)
nȳ+α2

(
∏n

i=1 yi!
)

Γ(α1)Γ(β1)Γ(n+ nȳ + α1 + β1)Γ(nȳ + α2)β
α2

2 .

(16)
Diffuse priors: take (α1, β1) = (1,1) and (α2, β2) = (ε, ε) for

some ε > 0.

Bayes factor reduces to

Γ(n+1)Γ(nȳ + 1)Γ(ε)(n+ ε)nȳ+ε
(
∏n

i=1 yi!
)

Γ(n+ nȳ + 2)Γ(nȳ + ε)εε
. (17)

This goes to +∞ as ε ↓ 0, i.e., you can make the evidence in
favor of the Geometric model over the Poisson as large
as you want, no matter what the data says, as a function

of a quantity near 0 that scientifically you have
no basis to specify.

If instead you fix and bound (α2, β2) away from 0 and let
(α1, β1) ↓ 0, you can completely reverse this and make the

evidence in favor of the Poisson model over the
Geometric as large as you want; and a Uniform(0, A) prior

on θ2 doesn’t help either.
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Instability of Bayes Factors

The bottom line is that, when scientific context suggests
diffuse priors on the parameter vectors in the models being
compared, the integrated likelihood values that are at the
heart of Bayes factors can be hideously sensitive to small

arbitrary details in how the diffuseness is specified.

This has been well-known for quite awhile now, and it’s
given rise to an amazing amount of fumbling around, as
people who like Bayes factors have tried to find a way to fix

the problem: at this point the list of attempts includes
{partial, intrinsic, fractional} Bayes factors,

well-calibrated priors, conventional priors, intrinsic
priors, expected posterior priors, ... (e.g., Pericchi 2004),

and all of them exhibit a level of ad-hockery that’s
otherwise absent from the Bayesian paradigm.

Approximating integrated likelihoods. We want

p(y|Mj) =

∫

p(y|θj,Mj) p(θj|Mj) dθj; (18)

maybe we can find an analytic approximation to this that
will suggest how to avoid trouble.

Laplace (1785) already faced this problem 225 years ago,
and he offered a solution that’s often useful, which we now
call a Laplace approximation in his honor (it’s also known

in the applied mathematics literature as a
saddle-point approximation).

Let∗ P ∗(θj) = p(y|θj,Mj) p(θj|Mj); we want an approximation
for

∫

P ∗(θj) dθj, in which we notice that P ∗(θj) is an
un-normalized probability density (namely, in our case, the

posterior distribution p(θj|y,Mj).

∗I’ve drawn on something written by David Mackay in creating this ex-
planation of the idea.
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Laplace Approximation

Laplace said to himself: with large n this posterior
distribution should be close to Gaussian, centered at the

posterior mode θ̂j; this means that its logarithm should be
close to quadratic around that mode, so let’s take a
Taylor expansion (Brook Taylor, 1685–1731, English

mathematician, published Taylor’s theorem in 1715) of
logP ∗(θj) around θ̂j and retain only the terms out to

second order.

First let’s look at this idea univariately, with θj a vector of
length kj = 1: you’ll recall that if g(x) is a function of a
single real variable x, then for x near some point x0,

g(x)
.
= g(x0) + g′(x0)(x− x0) +

1

2
g′′(x0)(x− x0)

2. (19)

Here x = θj, x0 = θ̂j, and g(x) = logP ∗(θj), from which

g′(x) = ∂
∂θj

logP ∗(θj) = (P ∗)
′
(θj)

P ∗(θj)
and g′(x0) = (P ∗)

′
(θ̂j)

P ∗(θ̂j)
= 0

because θ̂j is the mode of P ∗(θj); thus the
approximation becomes

logP ∗(θj)
.
= logP ∗(θ̂j)−

fj

2
(θj − θ̂j)

2, where

fj = −
∂2

∂θ2j
logP ∗(θj)

∣

∣

∣

∣

∣

θj=θ̂j

. (20)

Thus P ∗(θj)
.
= P ∗(θ̂j) exp

[

−fj

2
(θj − θ̂j)

2
]

and

p(y|Mj) =

∫

p(y|θj,Mj) p(θj|Mj) dθj =

∫

P ∗(θj) dθj (21)

.
= p(y|θ̂j,Mj) p(θ̂j|Mj)

∫ ∞

−∞

exp

[

−
fj

2
(θj − θ̂j)

2

]

dθj

= p(y|θ̂j,Mj) p(θ̂j|Mj)

√

2π

fj
,
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Laplace Approximation (continued)

and this can be expressed on the log scale as

log p(y|Mj)
.
= log p(y|θ̂j,Mj) + log p(θ̂j|Mj)

+
1

2
log 2π −

1

2
log fj. (22)

With θj a vector of length kj > 1, the details are similar
except that we base the approximation on a multivariate

Gaussian: you’ll probably recall that if g(x) is a
scalar-valued function of a vector x, then for x near some

point x0,

g(x)
.
= g(x0)+(x−x0)

′Dg(x0)+
1

2
(x−x0)

′D2g(x0)(x−x0), (23)

where Dg(x0) is the gradient (the vector of first partial
derivatives) of g evaluated at x0 and D2g(x0) is the Hessian
(the matrix of second partial derivatives) of g evaluated

at x0.

Here (as before) x = θj, x0 = θ̂j, and g(x) = logP ∗(θj), from
which the linear term vanishes (as before) and the

approximation is

logP ∗(θj)
.
= logP ∗(θ̂j)−

1

2
(θj − θ̂j)

′Ĥj(θj − θ̂j), (24)

where Ĥj is minus the Hessian of logP ∗(θj) evaluated at θ̂j.

This means that P ∗(θj)
.
= P ∗(θ̂j) exp

[

−1
2
(θj − θ̂j)

′Ĥj(θj − θ̂j)
]

,

which has a nice (un-normalized) multivariate Gaussian
form, and therefore

p(y|Mj) =

∫

p(y|θj,Mj) p(θj|Mj) dθj =

∫

P ∗(θj) dθj

.
= p(y|θ̂j,Mj) p(θ̂j|Mj) · (25)

∫

exp

[

−
1

2
(θj − θ̂j)

′Ĥj(θj − θ̂j)

]

dθj

= p(y|θ̂j,Mj) p(θ̂j|Mj)
∣

∣

∣
2πĤj

−1
∣

∣

∣

1

2

;
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Laplace Approximation (continued)

and since
∣

∣

∣
2πĤj

−1
∣

∣

∣

1

2

= (2π)
kj

2

∣

∣Ĥj

∣

∣

−1

2 the result

on the log scale is

log p(y|Mj)
.
= log p(y|θ̂j,Mj) + log p(θ̂j|Mj)

+
kj

2
log 2π −

1

2
log |Ĥj|, (26)

in which (as a reminder) θ̂j is the posterior mode of the
parameter vector θj under model Mj and Ĥj is the

(observed) information matrix (minus the Hessian) of
logP ∗(θj) = log p(y|θj,Mj) + log p(θj|Mj) under model Mj,

evaluated at the posterior mode θ̂j.

This is not quite the standard way Laplace
approximations are used in computing Bayes factors; by
analysis of the terms of third and higher order in the
Taylor expansion, it can be shown that the error of this

approximation is of order 1
n
:

log p(y|Mj) = log p(y|θ̂j,Mj) + log p(θ̂j|Mj)

+
kj

2
log 2π −

1

2
log |Ĥj|+O

(

1

n

)

; (27)

and it can be further shown that the approximation still
holds to order 1

n
if (a) you replace the posterior mode

with the MLE (the likelihood mode) and (b) you take Ĥj

to be Îj, the usual observed information matrix (minus
the Hessian of the log likelihood, evaluated at the MLE),

so the official Laplace approximation we’ll use is

log p(y|Mj) = log p(y|θ̂j,Mj) + log p(θ̂j|Mj)

+
kj

2
log 2π −

1

2
log |Îj|+O

(

1

n

)

, (28)

in which θ̂j is the MLE of the parameter vector θj under
model Mj and Îj is the observed information matrix for

model Mj.
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Laplace Approximation (continued)

Example: Gaussian sampling model with known mean µ

and unknown variance (continued):

Mj:

{

(σ2
j |Mj) ∼ Uniform(ε, A)

(yi|σ2
j ,Mj)

IID
∼ N(µ, σ2

j ), i = 1, . . . , n

}

. (29)

In this model θj = σ2
j and kj = 1; the likelihood function is

an arbitrary positive constant c times the sampling
distribution p(y|σ2

j ,Mj) = p(y|θj,Mj) noted earlier:

l(θj|y,Mj) = c (2π)−
n

2 (θj)
−n

2 exp

[

−
1

2θj

n
∑

i=1

(yi − µ)2

]

, (30)

leading to the log likelihood function

ll(θj|y,Mj) = c−
n

2
log(2π)−

n

2
log θj −

1

2θj

n
∑

i=1

(yi − µ)2, (31)

whose first and second partial derivatives are

∂

∂θj
ll(θj|y,Mj) = −

n

2θj
+

1

2θ2j

n
∑

i=1

(yi − µ)2 and (32)

∂2

∂θ2j
ll(θj|y,Mj) =

n

2θ2j
−

1

θ3j

n
∑

i=1

(yi − µ)2;

the MLE θ̂j solves ∂
∂θj

ll(θj|y,Mj) = 0 and is θ̂j =
s
n
, where

s =
∑n

i=1(yi − µ)2 is a (minimal) sufficient statistic in this
model, and the observed information is given by

Îj = −
∂2

∂θ2j
ll(θj|y,Mj)

∣

∣

∣

∣

∣

θj=θ̂j

= −
n

2θ̂2j
+

1

θ̂3j

n
∑

i=1

(yi − µ)2 =
n

2θ̂2j
.

(33)
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Laplace Approximation (continued)

Thus the Laplace approximation to the
log integrated likelihood is

log p(y|Mj)
.
= log p(y|θ̂j,Mj) + log p(θ̂j|Mj)

+
kj

2
log 2π −

1

2
log |Îj|, (34)

in which log p(y|θ̂j,Mj) = −n
2
log 2π − n

2
log θ̂j −

n
2
; in this

model the prior is p(θj|Mj) = 1
A−ε

I(ε,A)(θj), so the log prior,

evaluated at the MLE (which will be between ε and A by
choice of both of those values), is

log p(θ̂j|Mj) = − log(A− ε); and the Laplace approximation
finally becomes

log p(y|Mj)
.
= −

n

2
log 2π −

n

2
log θ̂j −

n

2
− log(A− ε)

+
1

2
log 2π −

1

2
log

(

n

2θ̂2j

)

. (35)

Here’s some R code to compare the earlier Monte Carlo
approximation, to the log integrated likelihood, with this

Laplace approximation:

log.integrated.likelihood <- function( n, mu,

sigma.data.generating, M, epsilon, A ) {

y <- rnorm( n, mu, sigma.data.generating )

s <- sum( ( y - mu )^2 )

sigma2.star <- runif( M, epsilon, A )

sampling.distribution <- ( 2 * pi )^( - n / 2 ) *

sigma2.star^( - n / 2 ) * exp( - s / ( 2 * sigma2.star ) )

monte.carlo.approximation <- log( mean( sampling.distribution ) )

theta.hat <- s / n
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Laplace Approximation (continued)

laplace.approximation <- - ( n / 2 ) * log( 2 * pi ) -
( n / 2 ) * log( theta.hat ) - n / 2 - log( A - epsilon ) +
log( 2 * pi ) / 2 - log( n ) / 2 + log( 2 ) / 2 +
log( theta.hat )

return( c( monte.carlo.approximation, laplace.approximation ) )

}

mu <- 0

sigma.data.generating <- 1

M <- 100000

epsilon <- 0.001

A <- 5

log.integrated.likelihood( 10, mu,
sigma.data.generating, M, epsilon, A )

[1] -14.72792 -14.95642

log.integrated.likelihood( 10, mu,
sigma.data.generating, M, epsilon, A )

[1] -13.25275 -13.49012

With different randomly-generated data sets the
approximate log integrated likelihood values bounce
around quite a bit, but you can see that the Laplace

approximation is already decent with n = 10 in this model,
and with n = 100 it’s right on the money:

log.integrated.likelihood( 100, mu,
sigma.data.generating, M, epsilon, A )

[1] -144.1683 -144.1803

log.integrated.likelihood( 100, mu,
sigma.data.generating, M, epsilon, A )

[1] -157.0197 -157.0448
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BIC

As derived above, the standard Laplace approximation
used in evaluating Bayes factors is

log p(y|Mj) = log p(y|θ̂j,Mj) + log p(θ̂j|Mj)

+
kj

2
log 2π −

1

2
log |Îj|+O

(

1

n

)

, (36)

in which θ̂j and Îj are the MLE of the parameter vector
and the observed information matrix under model

Mj, respectively.

Notice that the prior on θj in model Mj enters into this
approximation through log p(θ̂j|Mj), and this is a term that
won’t go away with more data: as n increases this term is

O(1) (i.e., bounded but not going to 0).

Using a less precise Taylor expansion, Schwarz (1978,
Annals of Statistics, 6, 461–464) obtained a different
approximation that’s the basis of what has come to be
known as the Bayesian information criterion (BIC):

log p(y|Mj) = log p(y|θ̂j,Mj)−
kj

2
logn+O(1). (37)

To see where it goes, let’s work out what implied prior BIC
is using, from the point of view of the Laplace

approximation: if the two approximations are supposed to
be equal, then

log p(θ̂j|Mj) = −
kj

2
log(2π)−

kj

2
logn+

1

2
log |Îj|; (38)

what prior on θj would reduce to expression (38)
when θj = θ̂j?

Right away that makes me think of a multivariate Gaussian
distribution centered at θ̂j, i.e., Nkj

(θ̂j,Σ) for some Σ; on
the log scale that prior is
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BIC (continued)

log p(θj|Mj) = log |2πΣ|−
1

2 −
1

2
(θj − θ̂j)

′Σ−1(θj − θ̂j), (39)

and the second term vanishes for θj = θ̂j.

So let’s set

log |2πΣ|−
1

2 = −
kj

2
log(2π)−

kj

2
logn+

1

2
log |Îj| (40)

and solve for Σ; the left-hand side simplifies to

log |2πΣ|−
1

2 = log
[

(2π)−
kj

2 |Σ|−
1

2

]

= −
kj

2
log(2π)−

1

2
log |Σ|, (41)

and equating and simplifying yields

log |Σ| = kj logn− log |Îj| = log |nÎ−1
j |, (42)

from which we have the answer: a prior on θj in model Mj

implied by the BIC O(1) approximation to the Laplace
O
(

1
n

)

approximation is

(θj|Mj) ∼ Nkj
(θ̂j, nÎ

−1
j ). (43)

In the literature this is called a unit-information prior, for
the following reason.

With large n we know from our earlier asymptotic work
that when estimating the parameter vector θj in model Mj,
the likelihood function will be approximately multivariate

Gaussian — l(θj|y,Mj) ∼ Nkj
(θ̂j, Î

−1
j ) — leading to the

Bayes’s-Theorem updating procedure

(θj|Mj) ∼ Nkj
(θ̂j, nÎ

−1
j ) (44)

l(θj|y,Mj) ∼ Nkj
(θ̂j, Î

−1
j ).
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Unit-Information Prior

Now we know that a Gaussian mixture of Gaussians is
Gaussian, with posterior mean vector in this case given by

θ̂j (since both the prior and likelihood mean vectors
coincide at that value) and posterior precision matrix
given by the sum of the prior and likelihood precision

matrices, namely

[

(nÎ−1
j )−1 + Îj

]

=
n+1

n
Îj; (45)

thus for large n the updating rule for θj in model Mj will be
approximately

(θj|Mj) ∼ Nkj
(θ̂j, nÎ

−1
j )

l(θj|y,Mj) ∼ Nkj
(θ̂j, Î

−1
j ) = Nkj

(θ̂j,
n

n
Î−1
j ) (46)

p(θj|y,Mj) ∼ Nkj
(θ̂j,

n

n+1
Î−1
j )

Since the approximate likelihood distribution is
Nkj

(θ̂j,
n
n
Î−1
j ), the posterior information is identical to the

likelihood information except that the uncertainty about
θj has been reduced from n

n
Î−1
j to n

n+1
Î−1
j , i.e., it’s as if the

prior were equivalent to 1 more observation that behaves
exactly like the data (hence the name

unit-information prior).

Example: What does this approach produce for a

unit-information prior with the sampling model

(yi|µ)
IID
∼ N(µ, σ2), i = 1, . . . , n, (47)

with σ2 known?

Since ȳ = 1
n

∑n
i=1 yi is a minimal sufficient statistic in this

model, we can immediately reduce by sufficiency to the
equivalent and simpler model

(ȳ|µ) ∼ N

(

µ,
σ2

n

)

. (48)
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Unit-Information Prior
In this model kj = 1 and θj = µ; the likelihood function is

l(µ|ȳ) ∼ N

(

ȳ,
σ2

n

)

, (49)

from which we can see directly that Îj
−1

= σ2

n
, so a

unit-information prior is

µ ∼ N(ȳ, σ2). (50)

This also makes good intuitive sense: with this prior you
get the same posterior as if you had (a) an improper,

completely flat prior on µ with 0 information content and
(b) a data set of (n+ 1) observations with mean equal to
the ȳ observed in the actual data set of n observations.

Notice that, like Jeffrey’s prior — p(θj|Mj) = c|Îj|
1

2, chosen
to achieve both diffuseness and invariance under
reparameterization — this unit-information prior

depends on the data, but in both cases the dependence is
rather gentle: as we saw in the example above, a

unit-information prior is equivalent to (a) a completely
flat prior and (b) a data set of (n+1) observations having
the same sufficient statistics as those observed in the
actual data set, and with moderate n this amounts to a

quite diffuse prior indeed.

Why BIC? As derived above, using the unit-information

prior (43) we get

log p(y|Mj) = log p(y|θ̂j,Mj)−
kj

2
logn+O(1). (51)

This approximation has the extremely desirable property
that it’s free of the hideous instability of integrated
likelihoods with respect to tiny details, in how diffuse
priors are specified, that do not arise directly from the

science of the problem; in my view, if you’re going to use
Bayes factors to choose among models, you’re well

advised to use a method like BIC that protects you from
yourself in mis-specifying those tiny details.
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Unit-Information Prior (continued)

The previous unit-information prior (UIP) could be called
an asymptotically-conjugate UIP, because it depends on
the likelihood function being approximately multivariate
normal with large n; as pointed out by someone in class,

this has the potentially undesirable property in small
samples that it may not respect the range of possible

parameter values (e.g., placing a normal prior on a
parameter that lives on (0,1)).

It turns out that in any given problem there may be more
than one UIP; let’s try for a small-sample-conjugate UIP

that remedies the range problem.

Example: Poisson sampling model, conjugate prior: for
i = 1, . . . , n,

λ ∼ Γ(α, β) (52)

(yi|λ)
IID
∼ Poisson(λ);

with this model (λ|y) ∼ Γ(α+ s, β + n), where s =
∑n

i=1 yi (a
sufficient statistic).

Q: What choices of α and β achieve the goals of the UIP

(prior worth one observation, posterior with this prior
equivalent to {flat prior + data set of (n+1)

observations having the same sufficient statistics as those
observed in the actual data set})?

A: In this model the prior sample size is β, so set that to

1; the posterior mean with the Γ(α, β) prior is α+s
β+n

; a

completely flat prior would be equivalent to Γ(0,0),
leading to a posterior mean of ȳ = s

n
; so set

(

β = 1, α+s
β+n

= ȳ
)

and solve for α, obtaining α = ȳ; thus a

small-sample-conjugate UIP for this sampling model is
λ ∼ Γ(ȳ,1).
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Diffuse Priors

Even faster: the data mean is ȳ; the posterior mean is a
weighted average of the prior and data means; to get a
posterior mean of ȳ, set the prior mean α

β
= ȳ; set the

prior sample size β = 1; → α = ȳ.

Example: Bernoulli sampling model, conjugate prior: for
i = 1, . . . , n,

θ ∼ Beta(α, β) (53)

(yi|θ)
IID
∼ Bernoulli(θ);

you can show (take-home test 2) that the
small-sample-conjugate UIP is Beta(ȳ,1− ȳ).

Further refinement: ε-information conjugate prior for
any ε > 0 — follow this line of reasoning with ε in place of a

prior sample size of 1; in the Gaussian, Poisson and
Bernoulli sampling models you get µ ∼ N

(

ȳ, σ
2

ε

)

,

λ ∼ Γ(εȳ, ε), and θ ∼ Beta(εȳ, ε(1− ȳ)), respectively; is this
worth pursuing in practice? (take-home test 2).

To clarify the role of, and potential difficulties with,
diffuse priors:

Bayesian task 1: given your data set y = (y1, . . . , yn) and

a parametric model Mj : (y|θj,Mj) ∼ p(y|θj,Mj) (with
parameter vector θj of length kj) on which you’re willing to
condition, learn about θj from the data, assuming little

relevant information about θj external to y.

In this task, as long as n is decently large (relative to kj),
the manner in which you specify a diffuse prior p(θj|Mj)

won’t matter much; by our earlier asymptotic results, two
such priors will lead to essentially the same posterior.
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Diffuse Priors (continued)

Bayesian task 2: given y, compare two or more models

Mj to see if one is better than the other.

In this task, if you use Bayes factors based on either the
Monte-Carlo approximation

p(y|Mj)
.
=

1

N

N
∑

i=1

p(y|θ∗ij,Mj) (54)

(where N is large and the θ∗ij are IID draws from the prior

p(θj|Mj)) or the full Laplace approximation

log p(y|Mj)
.
= log p(y|θ̂j,Mj) + log p(θ̂j|Mj)

+
kj

2
log 2π −

1

2
log |Îj| (55)

(in which θ̂j is the MLE of the parameter vector θj under
model Mj and Îj is the observed information matrix for

model Mj), the manner in which you specify a diffuse prior
p(θj|Mj) can matter a great deal, even with large n.

I’m aware of two remedies: (a) use Laplace with the
asymptotically-conjugate UIP (which is equivalent to

BIC), or Laplace with some other UIP (the combination
should be stable with respect to the diffuseness), or (b) do

your model comparison with something other than
Bayes factors (more on this below).

Why is BIC called the Bayesian information criterion?

log p(y|Mj)
.
= log p(y|θ̂j,Mj)−

kj

2
logn. (56)

People often work with a multiple of this for model
comparison (although Schwarz himself proposed (56)):

BIC(Mj|y) = −2 log p(y|θ̂j,Mj) + kj logn (57)

(the −2 multiplier comes from deviance considerations
(see below)).
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Information Criteria

With the −2 multiplier, good models have
small values of BIC.

BIC(Mj|y) = −2 log p(y|θ̂j,Mj) + kj logn (58)

The first term on the right side rewards the quality of the
model fit; the better the model fits the data, the bigger

log p(y|θ̂j,Mj) will be.

But you can always make the fit better just by including
more parameters (think of the IHGA case study, with the

model (yi|λi)
indep
∼ Poisson(λi), with n observations and n

parameters; by taking λ̂i yi the model fits the data
perfectly), so we need a penalty for making the model

overly complicated.

The second term on the right side, kj logn, penalizes
model complexity, and BIC does this at a logn rate for
each new parameter added; the model with the lowest

BIC will achieve the best trade-off between model fit and
model complexity (at least as BIC measures these

quantities; as we’ll see, there are other ways
to measure them).

By now there are many proposed information criteria
(IC) for model selection, and this is the way most of them
operate, by creating a tug of war between model fit and

model complexity.

In 1974, reasoning along different (and, in my view, ad
hoc) lines, Hirotugu Akaike (now an emeritus statistician
at the Institute of Statistical Mathematics in Tokyo)

proposed what he called AIC:

AIC(Mj|y) = −2 log p(y|θ̂j,Mj) + 2kj. (59)

He (coyly) proposed the name “an information criterion”
(AIC) for it; note (importantly) that it penalizes model

complexity only at an O(1) rate.
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DIC

By choosing the kj logn penalty for complexity, BIC has
the arguably important property of consistency in model
selection: if the actual data-generating model M ∗ is in

the set M = {M1,M2, . . .} over which you’re assessing your
model uncertainty, then as n increases with M fixed the

probability that BIC selects M ∗ goes to 1.

With the 2kj penalty for complexity, AIC fails to achieve
model-selection consistency; with even moderate n you

can see that 2kj < kj logn, so AIC tends to select
overly-complicated models (compared with the BIC

consistency standard).

There’s another IC-based Bayesian model-selection
criterion it’s good to know about: the deviance

information criterion (DIC).

The deviance for a model Mj measures the fit of Mj (on the
log likelihood scale) when compared to the best possible

fit you could achieve; it’s defined to be

D(Mj|y) = −2
[

log p(y|θ̂j,Mj)− log p(y|θ̂S,MS)
]

, (60)

in which θ̂j is the MLE under model Mj and θ̂S is the vector
of MLEs from a saturated model MS with a parameter

for every observation (so that the model fit is as good as
it can be).

Example: Gaussian with known variance σ2 and

unknown mean µ — Mj : (yi|µ)
IID
∼ N

(

µ, σ2
)

, i = 1, . . . , n.

We already know that in this model (with θj = µ)

log p(y|θj,Mj) = −
n

2
log(2π)−

n

2
logσ2−

1

2σ2

n
∑

i=1

(yi−µ)2, (61)
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DIC (continued)

and the MLE for µ is ȳ, so

log p(y|θ̂2j ,Mj) = −
n

2
log(2π)−

n

2
logσ2−

1

2σ2

n
∑

i=1

(yi− ȳ)2. (62)

Here the saturated model corresponding to Mj (one
parameter for each data point) is

MS : (yi|µi)
indep
∼ N

(

µi, σ
2
)

, i = 1, . . . , n;
thus θS = (µ1, . . . , µn) and

log p(y|θS,MS) = −
n

2
log(2π)−

n

2
logσ2−

1

2σ2

n
∑

i=1

(yi−µi)
2; (63)

the MLE of θS is θ̂S = (y1, . . . , yn) and

log p(y|θ̂S,MS) = −
n

2
log(2π)−

n

2
logσ2; (64)

so the deviance is

D(Mj|y) = −2
[

log p(y|θ̂j,Mj)− log p(y|θ̂S,MS)
]

=
1

σ2

n
∑

i=1

(yi − ȳ)2. (65)

The reason for the −2 in the definition of BIC, AIC and the
deviance is that with the −2 in front of the log likelihood,
the asymptotic repeated-sampling behavior of quantities
related to the deviance is χ2; for example, you know from
AMS 205 that in the IID Gaussian model with unknown

mean and variance, (n−1)σ̂2

σ2 ∼RS χ2
n−1 where

σ̂2 = 1
n−1

∑n
i=1(yi − ȳ)2, but in this case (n−1)σ̂2

σ2 = D(Mj|y) so

the deviance even has a small-sample χ2 story in this
model.

It’s often a pain to work with the log p(y|θ̂S,MS) term in the
deviance (e.g., sometimes it’s not so clear what the
saturated model should be); fortunately, if you’re

comparing two models M1 and M2 on the same data set,
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DIC (continued)

(a) it’s obviously natural to work with quantities like
[D(M2|y)−D(M1|y)] and (b) the saturated model is the

same for both M1 and M2, so you don’t have to compute
log p(y|θ̂S,MS) because it cancels in the subtraction:

D(M2|y)−D(M1|y) = −2
[

log p(y|θ̂2,M2)− log p(y|θ̂1,M1)
]

,
(66)

the difference of maximum log likelihood values under
the two models; for this reason the deviance is often simply

defined as

D(Mj|y) = −2 log p(y|θ̂j,Mj) + c. (67)

whenever it’s to be used solely for model comparison on
the same data set.

OK, now that we know what deviance is, what’s DIC?

Given a parametric model Mj : (y|θj,Mj) ∼ p(y|θj,Mj), the
WinBUGS people (Spiegelhalter et al., 2002) define the

deviance information criterion (DIC) (by analogy with
other information criteria) to be an estimate D(θ̄j) of the

model (lack of) fit (as measured by the deviance:
D(θj) = −2 log p(y|θj,Mj)) plus a penalty for complexity

equal to twice the effective number of parameters pDj of
the model:

DIC(Mj|y) = D(θ̄j) + 2 p̂Dj, (68)

where θ̄j is the posterior mean of θj; they suggest that
models with low DIC values are to be preferred over those

with higher values.

When pDj is difficult to read directly from the model
(e.g., in complex hierarchical models, especially those with

random effects), they motivate the following estimate,
which is easy to compute from standard MCMC output:
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DIC (continued)

p̂Dj = D(θj)−D(θ̄j), (69)

i.e., the difference between the posterior mean of the
deviance and the deviance evaluated at the posterior
mean of the parameter vector (WinBUGS has a button to

estimate these quantities, but it’s also easy to write your
own MCMC code to estimate DIC: −2 log p(y|θj,Mj) is
just a scalar-valued function of the parameter vector

that can be monitored as another column in the MCMC
data set).

With this particular way of estimating pDj, DIC becomes

DIC(Mj|y) = 2D(θj)−D(θ̄j). (70)

So far this just looks like a Bayesian version of AIC, and
indeed DIC (like AIC) is not asymptotically consistent
(this doesn’t bother Spiegelhalter et al.: “We are not

greatly concerned about this: we neither believe in a true
model nor would we expect the list of models being

considered to remain static as the sample size
increases”); it does have three advantages over AIC:

• it’s (small-sample) Bayesian, whereas AIC is
(large-sample) likelihood-based (i.e., with small n and
non-Gaussian likelihoods, DIC’s emphasis on posterior
means rather than likelihood modes may yield better
calibration performance in choosing a good model);

• it’s readily computed from MCMC output; and

• it provides a way to estimate the effective number of
parameters in a model in settings (e.g., hierarchical

models with random effects) in which it’s not obvious
how to count the number of parameters.

But DIC also has a big disadvantage: it turns out that,
because of the line of reasoning leading to p̂Dj,
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DIC (continued)

the approximation D(θj)−D(θ̄j) only works well if you
can find a parameterization in which the posterior

distribution p(θj|y,Mj) is close to (multivariate) normal.

Example: y = (0,0,1,1,1,1,2,2,2,2,3,3,3,4,4,5,6) is a

data set generated from the negative binomial distribution
with parameters (p, r) = (0.82,10.8) (in WinBUGS notation); y

has mean 2.35 and VTMR 1.22.

Using standard diffuse priors for p and r as in the BUGS
examples manuals, the effective number of parameters pD
for the negative binomial model (which fits the data quite
well) is estimated at –66.2, leading to a DIC value of –1.5:
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DIC (continued)

The problem, as mentioned earlier, is that in the original
parameterization, 0 < p < 1, r > 0 and the marginal
posteriors for both of these quantities were violently

non-normal; forcing WinBUGS to parameterize instead in

terms of lp = log
(

p

1−p

)

and lr = log(r) (by placing priors on

these transformed parameters instead of on p and r)
improves the DIC approximation dramatically, but the
estimate of pDj is still too low by 43% (the correct

number of parameters is 2, and DIC estimates it as 1.15).

The problem is even worse in mixture models — for
example, working with a sampling distribution that’s a

mixture of two Gaussians, as in
p(yi|γ, µ1, σ

2
1, µ2, σ

2
2,Mj) = γN(y;µ1, σ

2
1) + (1− γ)N(y;µ2, σ

2
2);

in these models DIC performs so badly that the WinBUGS
people had to disable the DIC button.
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A Predictive Criterion

I said back on page 6 of this set of notes that it would be
good to have a rather general-purpose utility-based way
to decide if M2 is better than M1, and I promised two ideas
along these lines; Bayes factors were the first idea; here’s

the second.

A hallmark of good scientific work is that good models
make good predictions and bad models make bad

predictions; this suggests developing a utility structure
based on predictive accuracy.

Consider first a setting in which the yi are real-valued and
the models to be compared are (as before)

Mj:

{

(θj|Mj) ∼ p(θj|Mj)
(y|θj,Mj) ∼ p(y|θj,Mj)

}

, (71)

for y = (y1, . . . , yn).

I can readily construct a posterior predictive distribution
for a new data value y∗ under each model:

p(y∗|y,Mj) =

∫

p(y∗|θj, y,Mj) p(θj|y,Mj) dθj

=

∫

p(y∗|θj,Mj) p(θj|y,Mj) dθj. (72)

This is similar to an integrated likelihood except that we
take the weighted average of the sampling distribution,

weighted by the posterior for θj in model Mj, which is

reason for excitement: all of that nonsense about diffuse
priors in Bayes factors will disappear in this approach.

How should I assess the quality of model Mj’s predictions?

If I had new data values y∗, I could compare them (in
some way) with their predictive distributions p(y∗|y,Mj)
under all of the models, and the model with the best

predictions would be favored; how should this
be quantified?
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Log Scoring

Evidently I need two things: new data values y∗, and a
way to compare a number y∗ with a predictive

distribution p(y∗|y,Mj) for it.

One natural approach to obtaining new data values is
cross-validation: partition the data into two

(non-overlapping and exhaustive) subsets yM (for
modeling) and yV (for validation), and fit predictive

distributions p(yV |yM ,Mj) for the validation values given
the modeling values.

A simple way to do this is with a jack-knife
(leave-one-out) form of cross-validation: let y−i stand for
the data set y with observation i omitted and compare yi

with p(yi|y−i,Mj) for all i = 1, . . . , n.

OK, so how do I compare a data point yi with its
predictive distribution p(yi|y−i,Mj)?

This is called the problem of scoring a predictor, and it’s
been given a lot of thought in fields like meteorology

(where people predict aspects of the weather every day).

Good scoring rules (according to definitions of the
following terms that I’ll omit for brevity; see, e.g., O’Hagan
and Forster, 2004) are impartial, symmetric and proper;

math fact: all impartial, symmetric and proper scoring
rules are linear functions of the logarithm of the height of
the predictive density p(yi|y−i,Mj) at the actual observed

value yi (i.e., log scores).

Once we have these log scores log p(yi|y−i,Mj), one for each
data value, a natural way to combine them is to

average them.

This suggest a model-selection criterion I’ll call the
cross-validation log score LSCV :

LSCV (Mj|y) =
1

n

n
∑

i=1

log p(yi|y−i,Mj). (73)
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Log Scoring (continued)

This can be given a direct decision-theoretic justification:
with a utility function for model j given by

U(Mj|y) = log p(y∗|y,Mj), (74)

where y∗ is a future data value, the expectation in the
process of maximizing expected utility (MEU) is over our
uncertainty about y∗; this expectation can be estimated

(assuming exchangeability) by LSCV (Mj|y).

The naive approach to calculating LSCV , when MCMC is
needed to compute the predictive distributions, requires n
MCMC runs, one for each omitted observation; it would
be nice to have a version of log scoring that could be
evaluated with a single MCMC run for each model.

This motivates what Draper and Krnjajić (2010) call the
full-sample log score: in the one-sample situation, for

instance, compute a single predictive distribution
p(y∗|y,Mj) for a future data value y∗ with each model Mj

under consideration, based on the entire data set y
(without omitting any observations), and define (cf. Laud

and Ibrahim, 1995)

LSFS(Mj|y) =
1

n

n
∑

i=1

log p(yi|y,Mj). (75)

This uses the data twice, but does so in a way that
matters less and less as n increases (and already matters

little for even moderate n).

Remarkably, Draper and Krnjajić (2010) have shown that not
only is LSFS faster to compute than naive implementations

of LSCV , it can actually do a better job of model
discrimination in small samples than either LSCV or DIC
(see my 4 Feb 2010 talk posted on the course web page).

• The log score approach works equally well with
parametric and nonparametric Bayesian models; DIC is

only defined for parametric models.
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Log Scoring (continued)

• When parametric model Mj with parameter vector θj is fit
via MCMC, the predictive ordinate p(y∗|y,Mj) in LSFS is
easy to approximate: with m identically distributed (not
necessarily independent) MCMC monitoring draws (θj)

∗
k

from p(θj|y,Mj),

p(y∗|y,Mj) =

∫

p(y∗|θj,Mj) p(θj|y,Mj)dθi

= E(θj |y,Mj) [p(y
∗|θj,Mj)] (76)

.
=

1

m

m
∑

k=1

p(y∗|(θj)
∗
k,Mj), and

LSFS(Mj|y)
.
=

1

n

n
∑

i=1

log

[

1

m

m
∑

k=1

p(yi|(θj)
∗
k,Mj)

]

.

Example: Revisiting the IHGA case study, four possible

models for the data (not all of them good):

• Two-independent-sample Gaussian (diffuse priors);

• One-sample Poisson (diffuse prior), pretending treatment
and control λs are equal;

• Two-independent-sample Poisson (diffuse priors), which
is equivalent to fixed-effects Poisson regression

(FEPR); and

• Random-effects Poisson regression (REPR), because C
and T variance-to-mean ratios (VTMRs) are 1.63 and

1.32, respectively:

(yi |λi)
indep
∼ Poisson(λi)

log(λi) = β0 + β1xi + ei (77)

ei
IID
∼ N

(

0, σ2
e

)

(

β0, β1, σ
2
e

)

∼ diffuse ,

where xi = 1 is a binary indicator for T/C status.
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IHGA example

To use the DIC feature in WinBUGS to produce the screen
shot above, I fit the REPR model as usual, did a burn-in of
1,000, selected DIC as a pull-down option from the Inference
menu, clicked the set button in the DIC Tool window that
popped up, changed the 1,000 to 10,000 in the updates

window of the Update Tool, clicked update, and then clicked
DIC in the DIC Tool when the monitoring run of 10,000 was
finished—the DIC results window appears, with the Dbar
(D(θ)), Dhat (D(θ̄)), pD (p̂D), and DIC (DIC(y)) values.

38



IHGA example (continued)

DIC and LS results on these four models:

Model D(θ) D(θ̄) p̂D DIC(y) LS(y)

1 (Gaussian) 1749.6 1745.6 3.99 1753.5 −1.552
2 (Poisson,
common λ)

1499.9 1498.8 1.02 1500.9 −1.316

3 (FEPR,
different λs)

1495.4 1493.4 1.98 1497.4 −1.314

4 (REPR)
1275.7
1274.7
1274.4

1132.0
1131.3
1130.2

143.2
143.5
144.2

1418.3
1418.2
1418.6

−1.180

(3 REPR rows were based on different monitoring runs, all of length
10,000, to give idea of Monte Carlo noise level.)

As σe → 0 in the REPR model, you get the FEPR model,
with pD = 2 parameters; as σe → ∞, in effect all subjects in
study have their own λ and pD would be 572; in between at

σe
.
= 0.675 (the posterior mean), WinBUGS estimates that

there are about 143 effective parameters in REPR
model, but its deviance D(θ̄j) is so much lower that it wins

the DIC contest hands down.
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The correlation between LS and DIC
across these four models is –0.98.
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Example of LSFS Calculations

Case Study: Measurement of physical constants. What

used to be called the National Bureau of Standards (NBS) in
Washington, DC, conducts extremely high precision

measurement of physical constants, such as the actual
weight of so-called check-weights that are supposed to

serve as reference standards (like the official kg).

In 1962–63, for example, n = 100 weighings (listed below) of
a block of metal called NB10, which was supposed to weigh
exactly 10g, were made under conditions as close to IID as
possible (Freedman et al., 1998); measurements are given

as micrograms below 10g.
Value 375 392 393 397 398 399 400 401

Frequency 1 1 1 1 2 7 4 12

Value 402 403 404 405 406 407 408 409
Frequency 8 6 9 5 12 8 5 5

Value 410 411 412 413 415 418 423 437
Frequency 4 1 3 1 1 1 1 1

Q: How much does NB10 really weigh?

The graph below is a normal qqplot of the 100
measurements y = (y1, . . . , yn), which have a mean of
ȳ = 404.6 (the units are micrograms below 10g)

and an SD of s = 6.5.
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LSFS Calculations (continued)

You can see that the data are symmetric but heavy-tailed;
two models to compare would be M1: Gaussian with

unknown mean and variance (probably doesn’t fit well)
and M2: t with unknown mean, variance and shape

(should fit better).

The files ams207-nb10-model2.txt, ams207-nb10-data.txt, and
ams207-nb10-inits2.txt on the course web page contain the

WinBUGS implementation of

M2: µ ∼ N(0,precision = 1.0E-6), σ ∼ U(0,7.0),

ν ∼ U(2.0,12.0), (yi|µ, σ, ν)
IID
∼ tν(µ, σ2)

I’ve stored the µ, σ and ν columns of the MCMC data set
from this model in files called nb10-model2-mu.txt,

nb10-model2-sigma.txt and nb10-model2-nu.txt, respectively.

The DIC value for this model is 618.2 (note that DIC has
misbehaved again: pD2 is estimated to be –1.1; I tried
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LSFS Calculations (continued)

diffuse priors on logσ and log ν to improve p̂D2, but that
made it worse (–4.4)).

I go through a similar process with the files
nb10-model1.txt, nb10-data.txt, and nb10-inits1.txt to fit

M1: µ ∼ N(0,precision = 1.0E-6), σ ∼ U(0,9.0),

(yi|µ, σ)
IID
∼ N(µ, σ2)

and store the µ and σ columns of the MCMC data set in files
called nb10-model1-mu.txt and nb10-model1-sigma.txt,

respectively; this time the DIC value is 660.1 and DIC is
better-behaved (pD is estimated to be 1.9, which is

about right).

On the basis of DIC I would conclude that M2 (618.2 with 3
parameters) is (substantially) better than M1 (660.1 with 2).

Here’s some R code (also available on the web page) to
compute the log score values for both models.

> y <- dget( "nb10-data.txt" )

> y <- sort( y$y )

> mu.t <- matrix( scan( "nb10-model2-mu.txt" ),

100000, 2, byrow = T )[ , 2 ]

> sigma.t <- matrix( scan( "nb10-model2-sigma.txt" ),

100000, 2, byrow = T )[ , 2 ]

> nu.t <- matrix( scan( "nb10-model2-nu.txt" ),

100000, 2, byrow = T )[ , 2 ]

> mu.G <- matrix( scan( "nb10-model1-mu.txt" ),

100000, 2, byrow = T )[ , 2 ]

> sigma.G <- matrix( scan( "nb10-model1-sigma.txt" ),

100000, 2, byrow = T )[ , 2 ]
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LSFS Calculations (continued)

> dt.s <- function( y, mu, sigma, nu ) {

> exp( lgamma( ( nu + 1 ) / 2 ) - ( ( nu + 1 ) / 2 ) *

> log( 1 + ( y - mu )^2 / ( nu * sigma^2 ) ) -

> lgamma( nu / 2 ) - log( nu * pi ) / 2 - log( sigma ) )

> }

> LS.contributions <- matrix( 0, 100, 2 )

> for ( j in 1:100 ) {

> LS.contributions[ j, 1 ] <- log( mean( dt.s( y[ j ],
> mu.t, sigma.t, nu.t ) ) )

> LS.contributions[ j, 2 ] <- log( mean( dnorm( y[ j ],

> mu.G, sigma.G ) ) )

> }

> cbind( y, LS.contributions,

> 0 + LS.contributions[ , 1 ] > LS.contributions[ , 2 ] )

t

better

than
t Gaussian G

[1,] 375 -8.586208 -12.204954 1

[2,] 392 -5.349809 -4.639139 0

[3,] 393 -5.077313 -4.362693 0

[4,] 397 -3.903555 -3.475233 0
[5,] 398 -3.602015 -3.309458 0

[6,] 398 -3.602015 -3.309458 0

[7,] 399 -3.307381 -3.166624 0

[8,] 399 -3.307381 -3.166624 0
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LSFS Calculations (continued)

[9,] 399 -3.307381 -3.166624 0
[10,] 399 -3.307381 -3.166624 0

[11,] 399 -3.307381 -3.166624 0

[12,] 399 -3.307381 -3.166624 0

[13,] 399 -3.307381 -3.166624 0

[14,] 400 -3.028685 -3.046933 1

[15,] 400 -3.028685 -3.046933 1
[16,] 400 -3.028685 -3.046933 1

[17,] 400 -3.028685 -3.046933 1

[18,] 401 -2.778176 -2.950552 1

[19,] 401 -2.778176 -2.950552 1

[20,] 401 -2.778176 -2.950552 1

[21,] 401 -2.778176 -2.950552 1
[22,] 401 -2.778176 -2.950552 1

[23,] 401 -2.778176 -2.950552 1

[24,] 401 -2.778176 -2.950552 1

[25,] 401 -2.778176 -2.950552 1

[26,] 401 -2.778176 -2.950552 1

[27,] 401 -2.778176 -2.950552 1
[28,] 401 -2.778176 -2.950552 1

[29,] 401 -2.778176 -2.950552 1

[30,] 402 -2.571441 -2.877618 1

[31,] 402 -2.571441 -2.877618 1

[32,] 402 -2.571441 -2.877618 1

[33,] 402 -2.571441 -2.877618 1

[34,] 402 -2.571441 -2.877618 1
[35,] 402 -2.571441 -2.877618 1

[36,] 402 -2.571441 -2.877618 1

[37,] 402 -2.571441 -2.877618 1

[38,] 403 -2.426129 -2.828236 1

[39,] 403 -2.426129 -2.828236 1

[40,] 403 -2.426129 -2.828236 1
[41,] 403 -2.426129 -2.828236 1

[42,] 403 -2.426129 -2.828236 1

[43,] 403 -2.426129 -2.828236 1

[44,] 404 -2.358212 -2.802475 1
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LSFS Calculations (continued)

[45,] 404 -2.358212 -2.802475 1
[46,] 404 -2.358212 -2.802475 1

[47,] 404 -2.358212 -2.802475 1

[48,] 404 -2.358212 -2.802475 1

[49,] 404 -2.358212 -2.802475 1

[50,] 404 -2.358212 -2.802475 1

[51,] 404 -2.358212 -2.802475 1
[52,] 404 -2.358212 -2.802475 1

[53,] 405 -2.376305 -2.800373 1

[54,] 405 -2.376305 -2.800373 1

[55,] 405 -2.376305 -2.800373 1

[56,] 405 -2.376305 -2.800373 1

[57,] 405 -2.376305 -2.800373 1
[58,] 406 -2.477698 -2.821932 1

[59,] 406 -2.477698 -2.821932 1

[60,] 406 -2.477698 -2.821932 1

[61,] 406 -2.477698 -2.821932 1

[62,] 406 -2.477698 -2.821932 1

[63,] 406 -2.477698 -2.821932 1
[64,] 406 -2.477698 -2.821932 1

[65,] 406 -2.477698 -2.821932 1

[66,] 406 -2.477698 -2.821932 1

[67,] 406 -2.477698 -2.821932 1

[68,] 406 -2.477698 -2.821932 1

[69,] 406 -2.477698 -2.821932 1

[70,] 407 -2.649778 -2.867123 1
[71,] 407 -2.649778 -2.867123 1

[72,] 407 -2.649778 -2.867123 1

[73,] 407 -2.649778 -2.867123 1

[74,] 407 -2.649778 -2.867123 1

[75,] 407 -2.649778 -2.867123 1

[76,] 407 -2.649778 -2.867123 1
[77,] 407 -2.649778 -2.867123 1

[78,] 408 -2.875393 -2.935880 1

[79,] 408 -2.875393 -2.935880 1

[80,] 408 -2.875393 -2.935880 1
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LSFS Calculations (continued)

[81,] 408 -2.875393 -2.935880 1

[82,] 408 -2.875393 -2.935880 1
[83,] 409 -3.137771 -3.028107 0

[84,] 409 -3.137771 -3.028107 0

[85,] 409 -3.137771 -3.028107 0

[86,] 409 -3.137771 -3.028107 0

[87,] 409 -3.137771 -3.028107 0

[88,] 410 -3.422943 -3.143672 0
[89,] 410 -3.422943 -3.143672 0

[90,] 410 -3.422943 -3.143672 0

[91,] 410 -3.422943 -3.143672 0

[92,] 411 -3.720225 -3.282413 0

[93,] 412 -4.021816 -3.444136 0

[94,] 412 -4.021816 -3.444136 0

[95,] 412 -4.021816 -3.444136 0
[96,] 413 -4.322196 -3.628616 0

[97,] 415 -4.905384 -4.064801 0

[98,] 418 -5.710652 -4.882504 0

[99,] 423 -6.845648 -6.656119 0

[100,] 437 -9.016222 -13.896384 1

> sum( LS.contributions[ , 1 ] > LS.contributions[ , 2 ] ) /

> length( y )

[1] 0.71

# Thus t model is predictively better than Gaussian for
# 71% of the data points.

LS.t <- mean( LS.contributions[ , 1 ] )

LS.G <- mean( LS.contributions[ , 2 ] )

c( LS.t, LS.G )

[1] -3.082331 -3.262142
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LSFS Calculations (continued)

Although it’s not immediately obvious, the log score for the
t model (−3.08) is substantially higher than that for the
Gaussian model (−3.26), so LS and DIC have reached the

same conclusion here.

> plot( y, LS.contributions[ , 1 ],
> ylim = c( min( LS.contributions ),
> max( LS.contributions ) ),
> ylab = ’Log Score Contributions’ )

> lines( y, LS.contributions[ , 1 ], lty = 1 )

> points( y, LS.contributions[ , 2 ], pch = 2 )

> lines( y, LS.contributions[ , 2 ], lty = 2 )

> legend( 397.5, -10, c( "t", "Gaussian" ), pch = c( 1, 2 ) )
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The t model fits better both in the tails (where the most
influential observations are from the Gaussian point of

view) and in the center (where most of the data values are).
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Is M1 good enough?

On page 5 of this set of notes I argued that the two basic
questions in model search are “Is M1 better than M2?

and “Is M1 good enough?”; we’ve talked quite a bit about
the former question; what about the latter?

As I argued on page 5, answering the question “Is M1 good
enough?” requires first answering another question —
“Good enough for what purpose?” — and this makes
answering both of the two basic questions a decision

problem, requiring the specification of a utility function
that quantifies your value judgments among good and

bad possibilities.

So this question — “Is M1 good enough?” — can’t be
answered in a general way; but we can make progress on a
general answer to a related question: “Could the data

have arisen from M1?”.

This is a model-checking question, and there are many
ways to try to answer it: all sorts of model-specific
diagnostics will occur to you (graphical [e.g., plot

residuals] and numerical), and you should use them (e.g.,
the variance-to-mean-ratios in the E and C groups in the
IHGA case study were substantially greater than 1, so

the IGHA data could not have come from a
Poisson model).

But here’s another general-purpose tool along these lines:
M1 gives a particular value of LSFS(M1|y) with the actual
data set y; how unusual is this value if M1 really were the

data-generating mechanism?

To answer this question we can simulate from M1 many
times, developing a distribution of LSFS values, and see
how unusual the actual data set’s log score is in this

distribution (Draper and Krnjajić, 2010).
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Posterior Predictive Model-Checking

This is related to the posterior predictive model-checking
method of Gelman, Meng and Stern (1996; see GCSB
chapter 6); however, this sort of thing cannot be done

naively, or the result will be poor calibration — indeed,
Robins et al. (2000) demonstrated that the Gelman et

al. procedure may be (sharply) conservative (and yet GCSB
have not changed their posterior predictive text to

reflect this in the current (second) edition of their book,
published in 2004).

Using a modification of an idea in Robins et al., Milovan
and I have developed a method for accurately calibrating

the log score scale.

Inputs to our procedure: (1) A data set (e.g., with
regression structure); (2) A model (can be parametric,

non-parametric, or semi-parametric).

Simple example: data set y = (1,2,2,3,3,3,4,6,7,11),
n = 10.

Given model (∗)

(λ) ∼ Gamma(0.001,0.001) (78)

(yi|λ)
IID
∼ Poisson(λ)

Step 1:

Calculate LSFS for this data set; say you get LSFS = −1.1;
call this the actual log score (ALS).

Obtain the posterior for λ given y based on this data set; call
this the actual posterior.
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Calibrating LSFS Scale

Step 2:

for ( i in 1:m1 ) {

make a lambda draw from the actual posterior;
call it lambda[ i ]

generate a data set of size n from the second
line of model (*) above, using
lambda = lambda[ i ]

compute the log score for this generated
data set; call it LS[ i ]

}

The output of this loop is a vector of log scores;
call this V.LS.

Locate the ALS in this distribution of LSFS values by
computing the percentage of LSFS values in V.LS that are ≤
ALS; call this percentage the unadjusted actual tail area

(say this is 0.22).

So far this is just Gelman et al. with LSFS as the
discrepancy function.

Milovan and I know from our own simulations and the
literature (Robins et al. 2000) that this tail area (a p-value
for a composite null hypothesis, e.g., Poisson(λ) with λ
unspecified) is conservative, i.e., with the 0.22 example

above an adjusted version of it that’s well calibrated would
be smaller.

In other words, if Gelman gives you a value of 0.01 you
know that there’s a problem with your model (because the
correct (calibrated) value would be even smaller), but if
he gives you a value of 0.40 the correct (calibrated) value
will be smaller and might be as small as (say) 0.04, which

might well lead you to a different conclusion.
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Calibrating LSFS Scale (continued)

We’ve modified and implemented one of the ways suggested
by Robins et al., and we’ve shown that it does indeed work

even in rather small-sample situations, although our
approach to implementing the basic idea can be

computationally intensive.

Step 3:

for ( j in 1:m2 ){

make a lambda draw from the actual posterior;
call it lambda*.

generate a data set of size n from the second line
of model (*) above, using lambda = lambda*;
call this the simulated data set

repeat steps 1, 2 above on this
simulated data set

}

The result will be a vector of unadjusted tail areas;
call this V.P.

Compute the percentage of tail areas in V.P that are ≤ the
unadjusted actual tail area; this is the

adjusted actual tail area.
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Calibrating LSFS Scale (continued)

The claim is that the 3-step procedure above is
well-calibrated, i.e., if the sampling part of model (∗) really
did generate the observed data, the distribution of adjusted
actual tail areas obtained in this way would be uniform,

apart from simulation noise.

Step 3 in this procedure solves the calibration problem by
applying the old idea that if X ∼ FX then FX(X) ∼ U(0,1).

This claim can be verified by building a big loop around
steps 1–3 as follows:

Choose a lambda value of interest; call it lambda.sim

for ( k in 1:m3 ) {

generate a data set of size n from the
second line of model (*) above, using
lambda = lambda.sim; call this the
validation data set

repeat steps 1-3 on the validation data set

}

The result will be a vector of adjusted P-values;
call this V.Pa.

We have verified (via simulation) in several simple (and
some less simple) situations that the values in V.Pa are close

to U(0,1) in distribution.

Two examples—Poisson(λ) and Gaussian(µ, σ2):
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Uncalibrated p-values
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Calibrated p-values
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Uncalibrated p-values
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Calibrated p-values
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R Implementation

Here’s some R code (available at the course web site) to
implement our method for calibrating the log score scale
in a one-sample Poisson setting, applied first to a simple

data set on length of stay (LoS) in the hospital for
mothers admitted to give birth and then to a simulated
data set that was not generated by the Poisson model.

> print( y <- c( 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6 ) )

[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6

> print( epsilon <- 0.001 )

[1] 0.001

> ln.poisson.gamma <- function( y, alpha, beta ) {

+

+ lgamma( alpha + y ) + alpha * log( beta /

+ ( beta + 1 ) ) + y * log( 1 / ( beta + 1 ) ) -

+ lgamma( alpha ) - lgamma( y + 1 )
+

+ }

> step1 <- function( y, epsilon ) {

+

+ n <- length( y )
+

+ s <- sum( y )

+

+ als <- mean( ln.poisson.gamma( y, epsilon + s,

+ epsilon + n ) )

+
+ return( c( n, s, als ) )

+

+ }

> print( step1.result <- step1( y, epsilon ) )

[1] 14.00000 29.00000 -1.71309

So the actual log score for the LoS data set is −1.71, but
is this unusually small if the data really were Poisson?
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R Implementation (continued)

> step2 <- function( n, s, epsilon, als, m1 ) {

+

+ lambda <- rgamma( m1, epsilon + s, epsilon + n )

+

+ ls <- rep( 0, m1 )

+
+ for ( i in 1:m1 ) {

+

+ y.star <- rpois( n, lambda[ i ] )

+

+ s.star <- sum( y.star )

+
+ ls[ i ] <- mean( ln.poisson.gamma( y.star,

+ epsilon + s.star, epsilon + n ) )

+

+ }

+

+ uata <- sum( ls <= als ) / m1
+

+ write( ls, "ls.out" )

+

+ return( uata )

+

+ }

> m1 <- 1000

>

> print( step2.result <- step2( step1.result[ 1 ],

+ step1.result[ 2 ], epsilon, step1.result[ 3 ], m1 ) )

[1] 0.418

> v.ls <- scan( "ls.out" )

Read 1000 items

>

> hist( v.ls, nclass = 20, probability = T,

+ main = ’’, xlab = ’uncalibrated log score’ )
>

> abline( v = step1.result[ 3 ] )
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R Implementation (continued)

uncalibrated log score
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The actual log score doesn’t look at all unusual in this
plot, but recall from the discussion above that it may not

yet be properly calibrated.

> step3 <- function( y, epsilon, m1, m2 ) {

+

+ step1.result <- step1( y, epsilon )

+

+ n <- step1.result[ 1 ]
+

+ s.actual <- step1.result[ 2 ]

+

+ uata <- step2( step1.result[ 1 ], step1.result[ 2 ],

+ epsilon, step1.result[ 3 ], m1 )

+
+ v.p <- rep( 0, m2 )
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R Implementation (continued)

+ for ( j in 1:m2 ) {

+
+ lambda.star <- rgamma( 1, epsilon + s.actual,

+ epsilon + n )

+

+ y.sim <- rpois( n, lambda.star )

+

+ step1.result <- step1( y.sim, epsilon )
+

+ v.p[ j ] <- step2( step1.result[ 1 ],

+ step1.result[ 2 ], epsilon, step1.result[ 3 ], m1 )

+

+ }

+
+ aata <- sum( v.p <= uata ) / m2

+

+ write( v.p, "v.p.out" )

+

+ return( aata )

+
+ }

> m2 <- 100

>

> print( step3.result <- step3( y, epsilon, m1, m2 ) )

[1] 0.4

Here the recalibration has not had much effect, but (as
the plots above showed) this will not always be the case.
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R Implementation (continued)

> v.p <- scan( "v.p.out" )

Read 100 items

>

> hist( v.p, nclass = 20, probability = T, xlim = c( 0, 1 ),
+ main = ’’, xlab = ’calibrated tail areas’ )

>

> abline( v = step2.result )

calibrated tail areas
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For a second example let’s look at a data set generated as
a lognormal mixture of Poissons with a

substantial VTMR.

> n <- 10
>

> e <- rnorm( n, 0.0, 0.5 )

>

> mu <- 0

>

> lambda <- rep( 0, n )
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R Implementation (continued)

> y <- rep( 0, n )

> for ( i in 1:n ) {

+

+ lambda[ i ] <- exp( mu + e[ i ] )

+
+ y[ i ] <- rpois( 1, lambda[ i ] )

+

+ }

> print( y <- sort( y ) )

[1] 0 0 0 1 1 1 2 3 4 4

> var( y ) / mean( y )

[1] 1.555556

> print( step1.result <- step1( y, epsilon ) )

[1] 10.000000 16.000000 -1.715601

> print( step2.result <- step2( step1.result[ 1 ],

+ step1.result[ 2 ], epsilon, step1.result[ 3 ], m1 ) )

[1] 0.178

> v.ls <- scan( "ls.out" )

> hist( v.ls, nclass = 20, probability = T,

+ main = ’’, xlab = ’uncalibrated log score’ )

> abline( v = step1.result[ 3 ] )
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R Implementation (continued)

uncalibrated log score
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> m2 <- 1000

> print( step3.result <- step3( y, epsilon, m1, m2 ) )

[1] 0.099

So here’s an example where the uncalibrated tail area is
about twice as big as it should be.

> v.p <- scan( "v.p.out" )

> hist( v.p, nclass = 20, probability = T, xlim = c( 0, 1 ),

+ main = ’’, xlab = ’calibrated tail areas’ )

> abline( v = step2.result )
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R Implementation (continued)

calibrated tail areas
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The true calibrated tail-area distribution is far from
uniform, so 0.178 is actually substantially farther out in

the true tail than it seems.
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LSCV , LSFS and DIC
Model Discrimination

Here are three behavioral rules: maximize LSCV ,
maximize LSFS, minimize DIC; with (e.g.) two models to
choose between, how accurately do these behavioral rules

discriminate between M1 and M2?

Example: Consider comparing the following two models,

with diffuse priors and i = 1, . . . , n:

M1:

{

λ ∼ p(λ)

(yi|λ)
IID
∼ Poisson(λ)

}

versus (79)

M2:



















(β0, σ
2) ∼ p(β0, σ

2)

(yi|λi)
indep
∼ Poisson(λi)

log(λi) = β0 + ei

ei
IID
∼ N(0, σ2)



















(80)

Milovan and I generated data from M2 and computed
LSCV , LSFS, and DIC for models M1 and M2 in full-factorial

grid {n = 32,42,56,100}, {β0 = 0.0,1.0},
σ2 = 0.1,0.25,0.5,1.0,1.5,2.0}, with 100 simulation

replications in each cell, and monitored percentages of
correct model choice (here M2 is always correct).

Examples of results for (e.g.) LSCV :

n = 32

% Correct Decision Mean Absolute Difference in LSCV

β0 β0

σ2 0 1 σ2 0 1
0.10 31 47 0.10 0.001 0.002
0.25 49 85 0.25 0.002 0.013
0.50 76 95 0.50 0.017 0.221
1.00 97 100 1.00 0.237 4.07
1.50 98 100 1.50 1.44 17.4
2.00 100 100 2.00 12.8 63.9

Even with n only 32, LSCV makes the right model choice
more than 90% of the time when σ2 > 0.5 for β0 = 1 and

when σ2 > 1.0 for β0 = 0.
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Model Discrimination (continued)
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The plots above compare Bayesian decision-theoretic
power curves for LSCV (solid lines), LSFS (long dotted

lines), and DIC (short dotted lines)
(row 1: β0 = 0; row 2: β0 = 1).

Remarkably, not only is LSFS much quicker
computationally than LSCV , it’s also more accurate at

identifying the correct model than LSCV or DIC.

To summarize, in computational efficiency

naive LSCV < DIC
.
= LSFS (81)

and in fixed- and random-effects Poisson modeling the
results in model discrimination power are

LSCV
.
= DIC < LSFS (82)
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What LSFS Is Not

Consider the likelihood part of a (parametric) model

Mj: (yi|θj,Mj)
IID
∼ p(yi|θj,Mj)(j = 1,2), with prior p(θj|Mj) for

model Mj.

The Bayes factor involves comparing quantities
of the form

p(y|Mj) =

∫

[

n
∏

i=1

p(yi|θj,Mj)

]

p(θj|Mj) dθj,

= E(θj |Mj)L(θj|y,Mj), (83)

i.e., the Bayes factor involves comparing expectations of
likelihoods with respect to the priors in the models under

comparison (this is why ordinary Bayes factors behave so
badly with diffuse priors).

Aitkin (1991) proposed instead posterior Bayes factors):
compute the expectations with respect to the posteriors,

i.e., PBF: favor model M1 if log L̄A
1 > log L̄A

2 , where

log L̄A
j = log

∫

[

n
∏

i=1

p(yi|θj,Mj)

]

p(θj|y,Mj) dθj. (84)

This solves the problem of sensitivity to a diffuse prior but
creates new problems of its own, e.g., it’s incoherent.

It may seem at first glance (e.g., O’Hagan and Forster
(2004) think so) that PBF is the same thing as LSFS:

favor model M1 if

nLSFS(M1|y) > nLSFS(M2|y). (85)

But not so:

nLSFS(Mj|y) = log

n
∏

i=1

[∫

p(yi|θj,Mj) p(θj|y,Mj) dθj

]

, (86)

and this is not the same because the integral and product
operators do not commute.
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What LSFS Is Not (continued)

Also, some people (e.g., Geweke (2005)) like to compare
models based on the posterior expectation of the log

likelihood (this is one of the ingredients in DIC), and this
is not the same as LSFS either: by Jensen’s inequality

nLSFS(Mj|y) =

n
∑

i=1

log p(yi|y,Mj)

=

n
∑

i=1

log

∫

p(yi|θj,Mj) p(θj|y,Mj) dθj

=

n
∑

i=1

logE(θj |y,Mj)L(θj|yi,Mj)

>

n
∑

i=1

E(θj |y,Mj) logL(θj|yi,Mj) (87)

= E(θj|y,Mj)

n
∑

i=1

logL(θj|yi,Mj)

= E(θj|y,Mj) log

n
∏

i=1

L(θj|yi,Mj)

= E(θj|y,Mj) logL(θj|y,Mj).
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