AMS 207: Intermediate Bayesian Modeling

6: Model Comparison and Model-Checking

David Draper

Department of Applied Mathematics and Statistics University of California, Santa Cruz
draper@ams.ucsc.edu
http://www.ams.ucsc.edu/~draper
(c) 2010 David Draper (all rights reserved)

The Big Picture, Again

The ingredients in a Bayesian statistical modeling problem are as follows:

- θ, something unknown to me (often this is a vector of
real numbers of length $k \geq 1$ - in which case I'm doing Bayesian parametric modeling, which is the focus of this class — but it could be just about anything);
- y, some information (data) that I judge relevant to decreasing my uncertainty about θ (often this is a vector $y=\left(y_{1}, \ldots, y_{n}\right)$ of length n, in which each y_{i} is itself a vector of real numbers of length $d \geq 1$ - which is the focus of this
class - but again it could be just about anything); and
- a desire to summarize my uncertainty about θ, on the basis of information both internal to and external to y, in a way that's internally (logically) consistent (coherent).

Then it's not just a choice, it's a theorem, that

- I need to quantify my uncertainty about θ through three conditional probability distributions (i.e., to use the machinery that arises by treating θ as a random variable even though its logical status is that of a fixed unknown constant):
- the prior distribution $p(\theta \mid \mathcal{B})$, which summarizes my information about θ external to the data set y, on the basis of my background assumptions and judgments \mathcal{B} about how the world works as far as θ is concerned;
— the likelihood distribution $l(\theta \mid y, \mathcal{B})=c p(y \mid \theta, \mathcal{B})$, obtained by density-normalizing, with the positive constant c, my prior conditional predictive distribution $p(y \mid \theta, \mathcal{B})$ (also known as my sampling distribution) for y given θ and \mathcal{B}, and
- the posterior distribution $p(\theta \mid y, \mathcal{B})$, which summarizes my information about θ both external and internal to the data set y, given \mathcal{B}; and

The Specification Problem, Revisited

- To avoid internal logical inconsistencies (incoherence), these distributions must be related, via Bayes's Theorem, as follows:

$$
\begin{equation*}
p(\theta \mid y, \mathcal{B})=c p(\theta \mid \mathcal{B}) l(\theta \mid y, \mathcal{B}) \tag{1}
\end{equation*}
$$

Let's agree to call $\{p(\theta \mid \mathcal{B}), l(\theta \mid y, \mathcal{B})\}$ (together) the Bayesian
(parametric) model M; and from now on I'll usually suppress \mathcal{B} for notational convenience (but we need to remember that it's still there).

OK, so now I know what to do, but:

- How do I specify $p(\theta)$ "well"?
- How do I specify $l(\theta \mid y)$ (or equivalently $p(y \mid \theta)$) "well"?
- What does "well" mean?

Believe it or not, choosing a reasonable meaning of "well" and making it operational are still active areas of Bayesian research.

As we've seen, judgments of conditional exchangeability (based on the science of the problem, i.e., part of \mathcal{B}) help a
lot with the likelihood/sampling distribution, but (as we've also seen) these judgments don't uniquely pin down
a single sampling model except with categorical
multinomial data (of which Bernoulli outcomes are a special case) or quantitative data (if you're willing to go directly to Bayesian nonparametric modeling, and this is beyond the scope of this class: AMS 241).

In my view this is where the other of the two basic principles governing good Bayesian modeling (coherence $+\ldots$) comes in:

I also want my Bayesian answers to be externally consistent (in the usual calibration sense of comparing how often I get the right answer with how often I say I'll get the right answer).

Coherence + Calibration

As I've discussed in my 7 Dec 2009 talk (on the course website), I see only three ways to pay the right price, in a calibration sense, for my uncertainty about how to specify my Bayesian model:

- Bayesian nonparametrics (BNP; in my view the most satisfying solution of all, but beyond the scope of this class);
- Bayesian model averaging (BMA): if I'm unsure about how to specify M, I collect all of the reasonable possibilities together into a set of models \mathcal{M} and sum or integrate hierarchically over \mathcal{M} to quantify my specification uncertainty: for example, with finite $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ and
a quantity Δ whose meaning is common to all these models (e.g., the next data value y_{n+1}),

$$
\begin{equation*}
p(\Delta \mid y, \mathcal{M})=\sum_{j=1}^{m} p\left(\Delta \mid y, M_{j}, \mathcal{M}\right) p\left(M_{j} \mid y, \mathcal{M}\right) \tag{2}
\end{equation*}
$$

here what this (sensibly) says to do is to take a weighted average of my conditional predictive distributions $p\left(\Delta \mid y, M_{j}, \mathcal{M}\right)$, weighted by their posterior probabilities $p\left(M_{j} \mid y, \mathcal{M}\right)$.
I view BMA as a parametric approximation to BNP:

- 3CV: As described in my 7 Dec 2009 talk, if I pay the right price for using the data to guide a search for "good" models, I can still achieve good calibration.

The Two Questions

Let's postpone details of how to do 3CV til later and focus now on how Bayesians might search for good models.

Such a search would need four ingredients:
(1) A starting point, say $M_{0}=M_{\text {old }}$;
(2) A way to suggest another model $M_{\text {new }}$ that might be better;
(3) A way to answer the question "Is $M_{n e w}$ better than $M_{\text {old }}$?" (this is model comparison); and

(4) A stopping rule.

With these ingredients I can start at (1), go to (2) and then (3); if $M_{n e w}$ is better, set the current best model to $M_{\text {new }}$ and go back to (2); if $M_{\text {new }}$ is not better, keep the current best model at $M_{\text {old }}$ and go back to (2); when my reservoir of \{time, money, ingenuity\} runs out, take the current best model M^{*} and make (4) operational by answering the question "Is M^{*} good enough?"
(When I'm done with this search, nothing says I have to move forward just with the best model I've found; I could keep track of all of the good models discovered and use BMA.)

As I argue in my 7 Dec 2009 talk, the two questions "Is $M_{\text {new }}$ better than $M_{\text {old }}$?" and "Is M^{*} good enough?" are not yet well-posed:
better than/good enough for what purpose?
Specifying the purpose of my modeling transforms the problem from inference to decision-making: in my view fully satisfying answers to these questions require (a) specifying a utility function that quantifies my value judgments among good and bad possibilities and (b) maximizing expected utility to choose a model (this is also beyond the scope of this course: AMS 221).

M_{2} Versus M_{1}

(See the example with Fouskakis in my 7 Dec 2009 talk for a fully-worked-out case study of model specification via decision theory.)

However, the decision-theoretic approach is hard work, and it's not always clear what the end-use of the modeling exercise will be; it would be good to have a rather general-purpose utility-based way to decide if M_{2} is better than M_{1}; here are two ideas along these lines.

Idea 1: Why not base the choice on posterior model probabilities?

By Bayes's Theorem in odds form,

$$
\begin{equation*}
\frac{p\left(M_{2} \mid y\right)}{p\left(M_{1} \mid y\right)}=\left[\frac{p\left(M_{2}\right)}{p\left(M_{1}\right)}\right] \cdot\left[\frac{p\left(y \mid M_{2}\right)}{p\left(y \mid M_{1}\right)}\right] ; \tag{3}
\end{equation*}
$$

the first term on the right is just the prior odds in favor of M_{2} over M_{1}, and the second term on the right is called the

Bayes factor, so in words equation (3) says
$\left(\begin{array}{c}\text { posterior } \\ \text { odds } \\ \text { for } M_{2} \\ \text { over } M_{1}\end{array}\right)=\left(\begin{array}{c}\text { prior odds } \\ \text { for } M_{2} \\ \text { over } M_{1}\end{array}\right) \cdot\left(\begin{array}{c}\text { Bayes factor } \\ \text { for } M_{2} \\ \text { over } M_{1}\end{array}\right)$.
Odds o are related to probabilities p via $o=\frac{p}{1-p}$ and $p=\frac{o}{1+o}$; these are monotone increasing transformations, so the decision rules \{choose M_{2} over M_{1} if the posterior odds for M_{2} are greater\} and \{choose M_{2} over M_{1} if $\left.P\left(M_{2} \mid y\right)>P\left(M_{1} \mid y\right)\right\}$ are equivalent.

This approach does have a decision-theoretic basis, but
it's rather odd: if you pretend that the only possible data-generating mechanisms are $\mathcal{M}=\left\{M_{1}, \ldots, M_{m}\right\}$ for finite m, and you pretend that one of the models in \mathcal{M} must

Bayes Factors

be the true data-generating mechanism, and you pretend that the utility function

$$
U(a)=\left\{\begin{array}{cc}
1 & \text { if your choice of model } a \text { is correct } \tag{5}\\
0 & \text { otherwise }
\end{array}\right\}
$$

reflects your real-world values, then it's
decision-theoretically optimal to choose the model in \mathcal{M} with the highest posterior probability (i.e., that choice maximizes expected utility).
If it's scientifically appropriate to take the prior model probabilities $p\left(M_{j}\right)$ to be equal, this rule reduces to
choosing the model with the highest Bayes factor in favor of it; this can be found by (a) computing the Bayes factor in favor of M_{2} over M_{1},

$$
\begin{equation*}
B F\left(M_{2} \text { over } M_{1} \mid y\right)=B F\left(M_{2} \mid y\right)=\frac{p\left(y \mid M_{2}\right)}{p\left(y \mid M_{1}\right)} \tag{6}
\end{equation*}
$$

favoring M_{2} if $B F\left(M_{2} \mid y\right)>1$, i.e., if $p\left(y \mid M_{2}\right)>p\left(y \mid M_{1}\right)$, and
calling the better model M^{*}; (b) computing the Bayes factor in favor of M^{*} over M_{3}, calling the better model M^{*}; and so on up through M_{m}.

Notice that there's something else a bit funny about this: $p\left(y \mid M_{j}\right)$ is the prior (not posterior) predictive distribution for the data set y under model M_{j}, so the Bayes factor rule tells us to choose the model that does a better job of predicting the data before any data arrives.

Example. When you come upon a new concept, it's a good idea to play with it in a simple setting where you're pretty sure you know the right answer, to see if the new concept gives you back known truth; in that spirit, let's look at one of the simplest possible inferential settings:

$$
\text { for } j=1,2 \text { and } i=1, \ldots, n
$$

$$
\begin{equation*}
\left(y_{i} \mid \mu_{j}, M_{j}\right) \stackrel{\text { IID }}{\sim} N\left(\mu_{j}, \sigma^{2}\right) \text { for known } \mu_{j} \text { and } \sigma^{2} . \tag{7}
\end{equation*}
$$

Bayes Factors (continued)

We can immediately reduce by sufficiency to the equivalent models

$$
\begin{equation*}
\left(\bar{y} \mid \mu_{j}, M_{j}\right) \sim N\left(\mu_{j}, \frac{\sigma^{2}}{n}\right) \quad \text { where } \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \tag{8}
\end{equation*}
$$

in other words, the two models agree on the Gaussian sampling story and the variance but disagree on the (underlying data-generating) mean.

Intuition says that you should favor the model for which \bar{y} and μ_{j} are closest; let's compute the Bayes factor and see if it agrees:

$$
\begin{align*}
p\left(y \mid M_{j}\right) & =p\left(\bar{y} \mid M_{j}\right)=\frac{1}{\sqrt{2 \pi \frac{\sigma^{2}}{n}}} \exp \left[-\frac{n}{2 \sigma^{2}}\left(\bar{y}-\mu_{j}\right)^{2}\right], \text { so } \\
B F\left(M_{2} \mid y\right) & =\frac{\frac{1}{\sqrt{2 \pi \frac{\sigma^{2}}{n}}} \exp \left[-\frac{n}{2 \sigma^{2}}\left(\bar{y}-\mu_{2}\right)^{2}\right]}{\frac{1}{\sqrt{2 \pi \frac{\sigma^{2}}{n}}} \exp \left[-\frac{n}{2 \sigma^{2}}\left(\bar{y}-\mu_{1}\right)^{2}\right]} \tag{9}\\
& =\exp \left\{-\frac{n}{2 \sigma^{2}}\left[\left(\bar{y}-\mu_{2}\right)^{2}-\left(\bar{y}-\mu_{1}\right)^{2}\right]\right\},
\end{align*}
$$

and this is greater than 1 (i.e., we should favor M_{2}) iff

$$
\left(\bar{y}-\mu_{2}\right)^{2}<\left(\bar{y}-\mu_{1}\right)^{2}, \text { as intuition suggested. }
$$

OK so far, but now let's look at the general problem of parametric model comparison, in which model M_{j} has its own parameter vector θ_{j} (of length k_{j}) and is specified by

$$
\begin{gather*}
M_{j}:\left\{\begin{array}{c}
\left(\theta_{j} \mid M_{j}\right) \sim p\left(\theta_{j} \mid M_{j}\right) \\
\left(y \mid \theta_{j}, M_{j}\right) \sim p\left(y \mid \theta_{j}, M_{j}\right)
\end{array}\right\}, \tag{10}\\
\text { for } y=\left(y_{1}, \ldots, y_{n}\right) .
\end{gather*}
$$

Bayes Factors (continued)

Here the quantity $p\left(y \mid M_{j}\right)$ that defines the Bayes factor is

$$
\begin{equation*}
p\left(y \mid M_{j}\right)=\int p\left(y \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid M_{j}\right) d \theta_{j} \tag{11}
\end{equation*}
$$

this is called an integrated likelihood (or marginal likelihood) because it tells us to take a weighted average of the sampling distribution/likelihood $p\left(y \mid \theta_{j}, M_{j}\right)$, but
NB weighed by the prior for θ_{j} in model M_{j}; as noted above, this may seem surprising, but it's correct, and it can lead to trouble, as follows.

The first trouble is technical: the integral in (11) can be difficult to compute, and may not even be much fun to approximate (more on this below).

The second thing to notice is that (11) can be rewritten as

$$
\begin{equation*}
p\left(y \mid M_{j}\right)=E_{\left(\theta_{j} \mid M_{j}\right)} p\left(y \mid \theta_{j}, M_{j}\right) \tag{12}
\end{equation*}
$$

In other words the integrated likelihood is the expectation of the sampling distribution over the prior for θ_{j} in model M_{j} (evaluated at the observed data y); in other words, if
scientific context suggests that $p\left(\theta_{j} \mid M_{j}\right)$ is diffuse, this expectation can be unstable with respect to small details in how the diffuseness is specified.

This can be seen directly by trying to approximate (12) via Monte Carlo: the expectation suggests that we (a) pick some large number N, (b) make N IID draws $\theta_{i j}^{*}$ from the prior $p\left(\theta_{j} \mid M_{j}\right)$, and (c) compute

$$
\begin{equation*}
p\left(y \mid M_{j}\right) \doteq \frac{1}{N} \sum_{i=1}^{N} p\left(y \mid \theta_{i j}^{*}, M_{j}\right) \tag{13}
\end{equation*}
$$

Imagine trying to do this with (e.g.) a $\Gamma(\epsilon, \epsilon)$ prior on a parameter living on $(0, \infty)$, and think about how unstable the result would be.

Instability of Bayes Factors

Example: Gaussian sampling model with known mean μ and unknown variance:

$$
\begin{gather*}
M_{j}:\left\{\begin{array}{c}
\left(\sigma_{j}^{2} \mid M_{j}\right) \sim \Gamma(\epsilon, \epsilon) \\
\left(y_{i} \mid \sigma_{j}^{2}, M_{j}\right) \stackrel{\operatorname{IID}}{\sim} N\left(\mu, \sigma_{j}^{2}\right), i=1, \ldots, n
\end{array}\right\} . \\
\text { In this model } \\
p\left(y \mid \sigma_{j}^{2}, M_{j}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma_{j}^{2}}} \exp \left[-\frac{1}{2 \sigma_{j}^{2}}\left(y_{i}-\mu\right)^{2}\right] \tag{15}\\
=(2 \pi)^{-\frac{n}{2}}\left(\sigma_{j}^{2}\right)^{-\frac{n}{2}} \exp \left[-\frac{1}{2 \sigma_{j}^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right] .
\end{gather*}
$$

Unfortunately, the $\Gamma(\epsilon, \epsilon)$ prior puts so much of its mass near 0 that about 47\% of the draws from it are regarded by R as exactly equal to 0 :
epsilon <- 0.001
$M<-100000$
sigma.star2 <- rgamma(M, epsilon, epsilon)
sum (sigma.star2 == 0) / M
[1] 0.47424
So the Monte Carlo approximation to $p\left(y \mid M_{j}\right)$ in equation (13) will fail with the $\Gamma(\epsilon, \epsilon)$ prior unless it's modified to be bounded away from 0; why not try a Uniform (ϵ, A) prior instead?
$m u<-0$
$\mathrm{n}<-10$
$\mathrm{y}<-\operatorname{rnorm}(\mathrm{n}, \mathrm{mu}, 1)$
$s<-\operatorname{sum}\left((y-m u){ }^{\wedge} 2\right)$

Instability of Bayes Factors

$M<-100000$
sensitivity <- function(M, epsilon, A, n, s) \{
sigma2.star <- runif(M, epsilon, A)
sampling.distribution <- (2 * pi)^(- n / 2) * sigma2.star^($-\mathrm{n} / 2$) * $\exp (-\mathrm{s} /(2 *$ sigma2.star $))$
return(c(mean(sampling.distribution)))
\}

```
sensitivity( M, 0.001, 5, n, s )
[1] 5.068015e-07
sensitivity( M, 0.01, 5, n, s )
[1] 5.08333e-07
sensitivity( M, 0.1, 5, n, s )
[1] 5.16355e-07
    OK, that's good: with the Uniform( }\epsilon,A\mathrm{ ) prior the Monte Carlo approximation to \(p\left(y \mid \sigma_{j}^{2}, M_{j}\right)\) is not sensitive to \(\epsilon\); what about \(A\) ?
```

sensitivity(M, 0.001, 5, n, s)
[1] $5.053105 \mathrm{e}-07$
sensitivity(M, 0.001, 10, n, s)
[1] 2.529732e-07
sensitivity(M, 0.001, 15, n, s)
[1] 1.695316e-07
sensitivity(M, 0.001, 50, n, s)
[1] $5.134128 \mathrm{e}-08$
sensitivity(M, 0.001, 500, n, s)
[1] $4.911668 \mathrm{e}-09$

Instability of Bayes Factors

With A the news is not good: as A increases the apparent plausibility of the same data under the same model goes down; in fact, if A is increased by a factor of 10, $p\left(y \mid \sigma_{j}^{2}, M_{j}\right)$ goes down by approximately the same factor of 10; and remember: A is not a number that comes from the science of the problem (we haven't even seen any data yet).

Example: Integer-valued data $y=\left(y_{1}, \ldots, y_{n}\right)$;
$M_{1}=\operatorname{Geometric}\left(\theta_{1}\right)$ likelihood with $\boldsymbol{\operatorname { B e t a }}\left(\alpha_{1}, \beta_{1}\right)$ prior on θ_{1};
$M_{2}=\operatorname{Poisson}\left(\theta_{2}\right)$ likelihood with $\operatorname{Gamma}\left(\alpha_{2}, \beta_{2}\right)$ prior on θ_{2}.

The Bayes factor in favor of M_{1} over M_{2} turns out to be

$$
\begin{equation*}
\frac{\Gamma\left(\alpha_{1}+\beta_{1}\right) \Gamma\left(n+\alpha_{1}\right) \Gamma\left(n \bar{y}+\beta_{1}\right) \Gamma\left(\alpha_{2}\right)\left(n+\beta_{2}\right)^{n \bar{y}+\alpha_{2}}\left(\prod_{i=1}^{n} y_{i}!\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\beta_{1}\right) \Gamma\left(n+n \bar{y}+\alpha_{1}+\beta_{1}\right) \Gamma\left(n \bar{y}+\alpha_{2}\right) \beta_{2}^{\alpha_{2}} .} \tag{16}
\end{equation*}
$$

Diffuse priors: take $\left(\alpha_{1}, \beta_{1}\right)=(1,1)$ and $\left(\alpha_{2}, \beta_{2}\right)=(\epsilon, \epsilon)$ for some $\epsilon>0$.

Bayes factor reduces to

$$
\begin{equation*}
\frac{\Gamma(n+1) \Gamma(n \bar{y}+1) \Gamma(\epsilon)(n+\epsilon)^{n \bar{y}+\epsilon}\left(\prod_{i=1}^{n} y_{i}!\right)}{\Gamma(n+n \bar{y}+2) \Gamma(n \bar{y}+\epsilon) \epsilon^{\epsilon}} . \tag{17}
\end{equation*}
$$

This goes to $+\infty$ as $\epsilon \downarrow 0$, i.e., you can make the evidence in favor of the Geometric model over the Poisson as large as you want, no matter what the data says, as a function of a quantity near 0 that scientifically you have no basis to specify.

If instead you fix and bound (α_{2}, β_{2}) away from 0 and let (α_{1}, β_{1}) $\downarrow 0$, you can completely reverse this and make the evidence in favor of the Poisson model over the
Geometric as large as you want; and a Uniform $(0, A)$ prior on θ_{2} doesn't help either.

Instability of Bayes Factors

The bottom line is that, when scientific context suggests diffuse priors on the parameter vectors in the models being compared, the integrated likelihood values that are at the heart of Bayes factors can be hideously sensitive to small arbitrary details in how the diffuseness is specified.

This has been well-known for quite awhile now, and it's given rise to an amazing amount of fumbling around, as people who like Bayes factors have tried to find a way to fix the problem: at this point the list of attempts includes \{partial, intrinsic, fractional\} Bayes factors, well-calibrated priors, conventional priors, intrinsic priors, expected posterior priors, ... (e.g., Pericchi 2004), and all of them exhibit a level of ad-hockery that's otherwise absent from the Bayesian paradigm.

Approximating integrated likelihoods. We want

$$
\begin{equation*}
p\left(y \mid M_{j}\right)=\int p\left(y \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid M_{j}\right) d \theta_{j} \tag{18}
\end{equation*}
$$

maybe we can find an analytic approximation to this that will suggest how to avoid trouble.

Laplace (1785) already faced this problem 225 years ago, and he offered a solution that's often useful, which we now call a Laplace approximation in his honor (it's also known in the applied mathematics literature as a saddle-point approximation).

> Let* $P^{*}\left(\theta_{j}\right)=p\left(y \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid M_{j}\right)$; we want an approximation for $\int P^{*}\left(\theta_{j}\right) d \theta_{j}$, in which we notice that $P^{*}\left(\theta_{j}\right)$ is an un-normalized probability density (namely, in our case, the posterior distribution $p\left(\theta_{j} \mid y, M_{j}\right)$.

[^0]
Laplace Approximation

Laplace said to himself: with Iarge n this posterior distribution should be close to Gaussian, centered at the posterior mode $\widehat{\theta}_{j}$; this means that its logarithm should be close to quadratic around that mode, so let's take a Taylor expansion (Brook Taylor, 1685-1731, English mathematician, published Taylor's theorem in 1715) of $\log P^{*}\left(\theta_{j}\right)$ around $\widehat{\theta}_{j}$ and retain only the terms out to second order.

First let's look at this idea univariately, with θ_{j} a vector of length $k_{j}=1$: you'll recall that if $g(x)$ is a function of a single real variable x, then for x near some point x_{0},

$$
\begin{equation*}
g(x) \doteq g\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} g^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} . \tag{19}
\end{equation*}
$$

Here $x=\theta_{j}, x_{0}=\hat{\theta}_{j}$, and $g(x)=\log P^{*}\left(\theta_{j}\right)$, from which

$$
g^{\prime}(x)=\frac{\partial}{\partial \theta_{j}} \log P^{*}\left(\theta_{j}\right)=\frac{\left(P^{*}\right)^{\prime}\left(\theta_{j}\right)}{P^{*}\left(\theta_{j}\right)} \text { and } g^{\prime}\left(x_{0}\right)=\frac{\left(P^{*}\right)^{\prime}\left(\hat{(}_{j}\right)}{P^{*}\left(\hat{j}_{j}\right)}=0
$$

because $\hat{\theta}_{j}$ is the mode of $P^{*}\left(\theta_{j}\right)$; thus the approximation becomes

$$
\begin{gather*}
\log P^{*}\left(\theta_{j}\right) \doteq \log P^{*}\left(\widehat{\theta}_{j}\right)-\frac{f_{j}}{2}\left(\theta_{j}-\widehat{\theta}_{j}\right)^{2}, \text { where } \\
f_{j}=-\left.\frac{\partial^{2}}{\partial \theta_{j}^{2}} \log P^{*}\left(\theta_{j}\right)\right|_{\theta_{j}=\hat{\theta}_{j}} \tag{20}\\
\text { Thus } P^{*}\left(\theta_{j}\right) \doteq P^{*}\left(\widehat{\theta}_{j}\right) \exp \left[-\frac{f_{j}}{2}\left(\theta_{j}-\widehat{\theta}_{j}\right)^{2}\right] \text { and } \\
p\left(y \mid M_{j}\right)=\int p\left(y \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid M_{j}\right) d \theta_{j}=\int P^{*}\left(\theta_{j}\right) d \theta_{j} \tag{21}\\
\doteq p\left(y \mid \widehat{\theta}_{j}, M_{j}\right) p\left(\widehat{\theta}_{j} \mid M_{j}\right) \int_{-\infty}^{\infty} \exp \left[-\frac{f_{j}}{2}\left(\theta_{j}-\widehat{\theta}_{j}\right)^{2}\right] d \theta_{j} \\
=p\left(y \mid \widehat{\theta}_{j}, M_{j}\right) p\left(\widehat{\theta}_{j} \mid M_{j}\right) \sqrt{\frac{2 \pi}{f_{j}}},
\end{gather*}
$$

Laplace Approximation (continued)

and this can be expressed on the log scale as

$$
\begin{gather*}
\log p\left(y \mid M_{j}\right) \doteq \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+\log p\left(\widehat{\theta}_{j} \mid M_{j}\right) \\
+\frac{1}{2} \log 2 \pi-\frac{1}{2} \log f_{j} \tag{22}
\end{gather*}
$$

With θ_{j} a vector of length $k_{j}>1$, the details are similar except that we base the approximation on a multivariate

Gaussian: you'll probably recall that if $g(x)$ is a scalar-valued function of a vector x, then for x near some point x_{0},

$$
\begin{equation*}
g(x) \doteq g\left(x_{0}\right)+\left(x-x_{0}\right)^{\prime} D g\left(x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{\prime} D^{2} g\left(x_{0}\right)\left(x-x_{0}\right) \tag{23}
\end{equation*}
$$

where $D g\left(x_{0}\right)$ is the gradient (the vector of first partial derivatives) of g evaluated at x_{0} and $D^{2} g\left(x_{0}\right)$ is the Hessian (the matrix of second partial derivatives) of g evaluated at x_{0}.

Here (as before) $x=\theta_{j}, x_{0}=\widehat{\theta}_{j}$, and $g(x)=\log P^{*}\left(\theta_{j}\right)$, from which the linear term vanishes (as before) and the approximation is

$$
\begin{equation*}
\log P^{*}\left(\theta_{j}\right) \doteq \log P^{*}\left(\widehat{\theta}_{j}\right)-\frac{1}{2}\left(\theta_{j}-\hat{\theta}_{j}\right)^{\prime} \widehat{H}_{j}\left(\theta_{j}-\widehat{\theta}_{j}\right) \tag{24}
\end{equation*}
$$

where \widehat{H}_{j} is minus the Hessian of $\log P^{*}\left(\theta_{j}\right)$ evaluated at $\widehat{\theta}_{j}$.
This means that $P^{*}\left(\theta_{j}\right) \doteq P^{*}\left(\hat{\theta}_{j}\right) \exp \left[-\frac{1}{2}\left(\theta_{j}-\hat{\theta}_{j}\right)^{\prime} \hat{H}_{j}\left(\theta_{j}-\hat{\theta}_{j}\right)\right]$, which has a nice (un-normalized) multivariate Gaussian form, and therefore

$$
\begin{align*}
p\left(y \mid M_{j}\right)= & \int p\left(y \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid M_{j}\right) d \theta_{j}=\int P^{*}\left(\theta_{j}\right) d \theta_{j} \\
\doteq & p\left(y \mid \widehat{\theta}_{j}, M_{j}\right) p\left(\widehat{\theta}_{j} \mid M_{j}\right) \tag{25}\\
& \int \exp \left[-\frac{1}{2}\left(\theta_{j}-\widehat{\theta}_{j}\right)^{\prime} \widehat{H}_{j}\left(\theta_{j}-\widehat{\theta}_{j}\right)\right] d \theta_{j} \\
& \quad p\left(y \mid \widehat{\theta}_{j}, M_{j}\right) p\left(\widehat{\theta}_{j} \mid M_{j}\right)\left|2 \pi \hat{H}_{j}^{-1}\right|^{\frac{1}{2}}
\end{align*}
$$

Laplace Approximation (continued)

and since $\left|2 \pi \widehat{H}_{j}^{-1}\right|^{\frac{1}{2}}=(2 \pi)^{\frac{k_{j}}{2}}\left|\widehat{H}_{j}\right|^{-\frac{1}{2}}$ the result
on the log scale is
$\log p\left(y \mid M_{j}\right) \doteq \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+\log p\left(\widehat{\theta}_{j} \mid M_{j}\right)$

$$
\begin{equation*}
+\frac{k_{j}}{2} \log 2 \pi-\frac{1}{2} \log \left|\hat{H}_{j}\right| \tag{26}
\end{equation*}
$$

in which (as a reminder) $\hat{\theta}_{j}$ is the posterior mode of the parameter vector θ_{j} under model M_{j} and \hat{H}_{j} is the
(observed) information matrix (minus the Hessian) of $\log P^{*}\left(\theta_{j}\right)=\log p\left(y \mid \theta_{j}, M_{j}\right)+\log p\left(\theta_{j} \mid M_{j}\right)$ under model M_{j}, evaluated at the posterior mode $\hat{\theta}_{j}$.

This is not quite the standard way Laplace approximations are used in computing Bayes factors; by analysis of the terms of third and higher order in the Taylor expansion, it can be shown that the error of this approximation is of order $\frac{1}{n}$:

$$
\begin{align*}
\log p\left(y \mid M_{j}\right)= & \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+\log p\left(\widehat{\theta}_{j} \mid M_{j}\right) \\
& +\frac{k_{j}}{2} \log 2 \pi-\frac{1}{2} \log \left|\widehat{H}_{j}\right|+O\left(\frac{1}{n}\right) ; \tag{27}
\end{align*}
$$

and it can be further shown that the approximation still holds to order $\frac{1}{n}$ if (a) you replace the posterior mode with the MLE (the likelihood mode) and (b) you take \hat{H}_{j} to be \widehat{I}_{j}, the usual observed information matrix (minus the Hessian of the log likelihood, evaluated at the MLE), so the official Laplace approximation we'll use is

$$
\begin{align*}
\log p\left(y \mid M_{j}\right)= & \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+\log p\left(\widehat{\theta}_{j} \mid M_{j}\right) \\
& \quad+\frac{k_{j}}{2} \log 2 \pi-\frac{1}{2} \log \left|\widehat{I}_{j}\right|+O\left(\frac{1}{n}\right), \tag{28}
\end{align*}
$$

in which $\hat{\theta}_{j}$ is the MLE of the parameter vector θ_{j} under model M_{j} and \hat{I}_{j} is the observed information matrix for model M_{j}.

Laplace Approximation (continued)

Example: Gaussian sampling model with known mean μ and unknown variance (continued):

$$
M_{j}:\left\{\begin{array}{c}
\left(\sigma_{j}^{2} \mid M_{j}\right) \sim \operatorname{Uniform}(\epsilon, A) \tag{29}\\
\left(y_{i} \mid \sigma_{j}^{2}, M_{j}\right) \stackrel{\text { IID }}{\sim} N\left(\mu, \sigma_{j}^{2}\right), i=1, \ldots, n
\end{array}\right\} .
$$

In this model $\theta_{j}=\sigma_{j}^{2}$ and $k_{j}=1$; the likelihood function is an arbitrary positive constant c times the sampling distribution $p\left(y \mid \sigma_{j}^{2}, M_{j}\right)=p\left(y \mid \theta_{j}, M_{j}\right)$ noted earlier:

$$
\begin{equation*}
l\left(\theta_{j} \mid y, M_{j}\right)=c(2 \pi)^{-\frac{n}{2}}\left(\theta_{j}\right)^{-\frac{n}{2}} \exp \left[-\frac{1}{2 \theta_{j}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right], \tag{30}
\end{equation*}
$$

leading to the log likelihood function

$$
\begin{equation*}
l l\left(\theta_{j} \mid y, M_{j}\right)=c-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \theta_{j}-\frac{1}{2 \theta_{j}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}, \tag{31}
\end{equation*}
$$

whose first and second partial derivatives are

$$
\begin{array}{r}
\frac{\partial}{\partial \theta_{j}} l l\left(\theta_{j} \mid y, M_{j}\right)=-\frac{n}{2 \theta_{j}}+\frac{1}{2 \theta_{j}^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2} \quad \text { and } \tag{32}\\
\frac{\partial^{2}}{\partial \theta_{j}^{2}} l l\left(\theta_{j} \mid y, M_{j}\right)=\frac{n}{2 \theta_{j}^{2}}-\frac{1}{\theta_{j}^{3}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2} ;
\end{array}
$$

the MLE $\hat{\theta}_{j}$ solves $\frac{\partial}{\partial \theta_{j}} l l\left(\theta_{j} \mid y, M_{j}\right)=0$ and is $\hat{\theta}_{j}=\frac{s}{n}$, where $s=\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}$ is a (minimal) sufficient statistic in this model, and the observed information is given by

$$
\begin{equation*}
\widehat{I}_{j}=-\left.\frac{\partial^{2}}{\partial \theta_{j}^{2}} l l\left(\theta_{j} \mid y, M_{j}\right)\right|_{\theta_{j}=\hat{\theta}_{j}}=-\frac{n}{2 \widehat{\theta}_{j}^{2}}+\frac{1}{\hat{\theta}_{j}^{3}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}=\frac{n}{2 \widehat{\theta}_{j}^{2}} \tag{33}
\end{equation*}
$$

Laplace Approximation (continued)

Thus the Laplace approximation to the log integrated likelihood is

$$
\begin{gather*}
\log p\left(y \mid M_{j}\right) \doteq \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+\log p\left(\widehat{\theta}_{j} \mid M_{j}\right) \\
+\frac{k_{j}}{2} \log 2 \pi-\frac{1}{2} \log \left|\widehat{I}_{j}\right| \tag{34}
\end{gather*}
$$

in which $\log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)=-\frac{n}{2} \log 2 \pi-\frac{n}{2} \log \hat{\theta}_{j}-\frac{n}{2}$; in this model the prior is $p\left(\theta_{j} \mid M_{j}\right)=\frac{1}{A-\epsilon} I_{(\epsilon, A)}\left(\theta_{j}\right)$, so the \log prior, evaluated at the MLE (which will be between ϵ and A by choice of both of those values), is $\log p\left(\widehat{\theta}_{j} \mid M_{j}\right)=-\log (A-\epsilon) ;$ and the Laplace approximation finally becomes

$$
\begin{align*}
\log p\left(y \mid M_{j}\right) \doteq- & \frac{n}{2} \log 2 \pi-\frac{n}{2} \log \hat{\theta}_{j}-\frac{n}{2}-\log (A-\epsilon) \\
& +\frac{1}{2} \log 2 \pi-\frac{1}{2} \log \left(\frac{n}{2 \hat{\theta}_{j}^{2}}\right) \tag{35}
\end{align*}
$$

Here's some R code to compare the earlier Monte Carlo approximation, to the log integrated likelihood, with this Laplace approximation:
log.integrated.likelihood <- function(n, mu, sigma.data.generating, M, epsilon, A) \{
y <- rnorm(n, mu, sigma.data.generating)
$\left.s<-\operatorname{sum}((y-m u))^{\wedge}\right)$
sigma2.star <- runif(M, epsilon, A)
sampling.distribution <- (2 * pi $)^{\wedge}(-\mathrm{n} / 2$) * sigma2.star^($-\mathrm{n} / 2$) * exp ($-\mathrm{s} /(2$ * sigma2.star))
monte.carlo.approximation <- log(mean(sampling.distribution))
theta.hat <-s / n

Laplace Approximation (continued)

laplace.approximation <- - ($\mathrm{n} / 2$) * $\log (2$ * pi) ($\mathrm{n} / 2$) * $\log ($ theta.hat $)-\mathrm{n} / 2-\log (\mathrm{A}-\mathrm{epsilon})+$ $\log (2 * \mathrm{pi}) / 2-\log (\mathrm{n}) / 2+\log (2) / 2+$ $\log ($ theta.hat $)$
return(c(monte.carlo.approximation, laplace.approximation))
\}
$m u<-0$
sigma.data.generating <- 1
$M<-100000$
epsilon <- 0.001
$A<-5$
log.integrated.likelihood(10, mu, sigma.data.generating, M, epsilon, A)
[1] -14.72792 -14.95642
log.integrated.likelihood(10, mu, sigma.data.generating, M, epsilon, A)
[1] $-13.25275-13.49012$
With different randomly-generated data sets the approximate log integrated likelihood values bounce around quite a bit, but you can see that the Laplace approximation is already decent with $n=10$ in this model, and with $n=100$ it's right on the money:
log.integrated.likelihood(100, mu, sigma.data.generating, M, epsilon, A)
[1] $-144.1683-144.1803$
log.integrated.likelihood(100, mu, sigma.data.generating, M, epsilon, A)
[1] -157.0197 -157.0448

BIC

As derived above, the standard Laplace approximation used in evaluating Bayes factors is

$$
\begin{align*}
\log p\left(y \mid M_{j}\right)= & \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+\log p\left(\widehat{\theta}_{j} \mid M_{j}\right) \\
& \quad+\frac{k_{j}}{2} \log 2 \pi-\frac{1}{2} \log \left|\widehat{I}_{j}\right|+O\left(\frac{1}{n}\right), \tag{36}
\end{align*}
$$

in which $\hat{\theta}_{j}$ and \widehat{I}_{j} are the MLE of the parameter vector and the observed information matrix under model M_{j}, respectively.

Notice that the prior on θ_{j} in model M_{j} enters into this approximation through $\log p\left(\hat{\theta}_{j} \mid M_{j}\right)$, and this is a term that won't go away with more data: as n increases this term is $O(1)$ (i.e., bounded but not going to 0).

Using a less precise Taylor expansion, Schwarz (1978, Annals of Statistics, 6, 461-464) obtained a different approximation that's the basis of what has come to be known as the Bayesian information criterion (BIC):

$$
\begin{equation*}
\log p\left(y \mid M_{j}\right)=\log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)-\frac{k_{j}}{2} \log n+O(1) \tag{37}
\end{equation*}
$$

To see where it goes, let's work out what implied prior BIC is using, from the point of view of the Laplace approximation: if the two approximations are supposed to be equal, then

$$
\begin{equation*}
\log p\left(\widehat{\theta}_{j} \mid M_{j}\right)=-\frac{k_{j}}{2} \log (2 \pi)-\frac{k_{j}}{2} \log n+\frac{1}{2} \log \left|\widehat{I}_{j}\right| ; \tag{38}
\end{equation*}
$$

what prior on θ_{j} would reduce to expression (38) when $\theta_{j}=\widehat{\theta}_{j}$?

Right away that makes me think of a multivariate Gaussian distribution centered at $\widehat{\theta}_{j}$, i.e., $N_{k_{j}}\left(\widehat{\theta}_{j}, \Sigma\right)$ for some Σ; on the $\boldsymbol{I o g}$ scale that prior is

BIC (continued)

$$
\begin{equation*}
\log p\left(\theta_{j} \mid M_{j}\right)=\log |2 \pi \Sigma|^{-\frac{1}{2}}-\frac{1}{2}\left(\theta_{j}-\widehat{\theta}_{j}\right)^{\prime} \Sigma^{-1}\left(\theta_{j}-\widehat{\theta}_{j}\right) \tag{39}
\end{equation*}
$$

and the second term vanishes for $\theta_{j}=\hat{\theta}_{j}$.

$$
\begin{gather*}
\text { So let's set } \\
\log |2 \pi \Sigma|^{-\frac{1}{2}}=-\frac{k_{j}}{2} \log (2 \pi)-\frac{k_{j}}{2} \log n+\frac{1}{2} \log \left|\widehat{I}_{j}\right| \tag{40}
\end{gather*}
$$

and solve for Σ; the left-hand side simplifies to

$$
\begin{align*}
\log |2 \pi \Sigma|^{-\frac{1}{2}} & =\log \left[(2 \pi)^{-\frac{k_{j}}{2}}|\Sigma|^{\left.\right|^{-\frac{1}{2}}}\right] \\
& =-\frac{k_{j}}{2} \log (2 \pi)-\frac{1}{2} \log |\Sigma| \tag{41}
\end{align*}
$$

and equating and simplifying yields

$$
\begin{equation*}
\log |\Sigma|=k_{j} \log n-\log \left|\widehat{I}_{j}\right|=\log \left|n \hat{I}_{j}^{-1}\right| \tag{42}
\end{equation*}
$$

from which we have the answer: a prior on θ_{j} in model M_{j} implied by the BIC $O(1)$ approximation to the Laplace $O\left(\frac{1}{n}\right)$ approximation is

$$
\begin{equation*}
\left(\theta_{j} \mid M_{j}\right) \sim N_{k_{j}}\left(\hat{\theta}_{j}, n \hat{I}_{j}^{-1}\right) \tag{43}
\end{equation*}
$$

In the literature this is called a unit-information prior, for the following reason.

With large n we know from our earlier asymptotic work that when estimating the parameter vector θ_{j} in model M_{j}, the likelihood function will be approximately multivariate Gaussian - $l\left(\theta_{j} \mid y, M_{j}\right) \sim N_{k_{j}}\left(\hat{\theta}_{j}, \hat{I}_{j}^{-1}\right)$ - leading to the Bayes's-Theorem updating procedure

$$
\begin{align*}
\left(\theta_{j} \mid M_{j}\right) & \sim N_{k_{j}}\left(\hat{\theta}_{j}, n \hat{I}_{j}^{-1}\right) \tag{44}\\
l\left(\theta_{j} \mid y, M_{j}\right) & \sim N_{k_{j}}\left(\hat{\theta}_{j}, \hat{I}_{j}^{-1}\right) .
\end{align*}
$$

Unit-Information Prior

Now we know that a Gaussian mixture of Gaussians is Gaussian, with posterior mean vector in this case given by $\widehat{\theta}_{j}$ (since both the prior and likelihood mean vectors coincide at that value) and posterior precision matrix given by the sum of the prior and likelihood precision matrices, namely

$$
\begin{equation*}
\left[\left(n \widehat{I}_{j}^{-1}\right)^{-1}+\widehat{I}_{j}\right]=\frac{n+1}{n} \widehat{I}_{j} \tag{45}
\end{equation*}
$$

thus for large n the updating rule for θ_{j} in model M_{j} will be approximately

$$
\begin{align*}
\left(\theta_{j} \mid M_{j}\right) & \sim N_{k_{j}}\left(\widehat{\theta}_{j}, n \widehat{I}_{j}^{-1}\right) \\
l\left(\theta_{j} \mid y, M_{j}\right) & \sim N_{k_{j}}\left(\widehat{\theta}_{j}, \widehat{I}_{j}^{-1}\right)=N_{k_{j}}\left(\widehat{\theta}_{j}, \frac{n}{n} \widehat{I}_{j}^{-1}\right) \tag{46}\\
p\left(\theta_{j} \mid y, M_{j}\right) & \sim N_{k_{j}}\left(\widehat{\theta}_{j}, \frac{n}{n+1} \widehat{I}_{j}^{-1}\right)
\end{align*}
$$

Since the approximate likelihood distribution is $N_{k_{j}}\left(\widehat{\theta}_{j}, \frac{n}{n} \widehat{I}_{j}^{-1}\right)$, the posterior information is identical to the likelihood information except that the uncertainty about θ_{j} has been reduced from $\frac{n}{n} \widetilde{I}_{j}^{-1}$ to $\frac{n}{n+1} \widehat{I}_{j}^{-1}$, i.e., it's as if the prior were equivalent to 1 more observation that behaves exactly like the data (hence the name unit-information prior).

Example: What does this approach produce for a unit-information prior with the sampling model

$$
\begin{align*}
\left(y_{i} \mid \mu\right) & \stackrel{\text { IID }}{\sim} N\left(\mu, \sigma^{2}\right), \quad i=1, \ldots, n, \tag{47}\\
& \text { with } \sigma^{2} \text { known? }
\end{align*}
$$

Since $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ is a minimal sufficient statistic in this model, we can immediately reduce by sufficiency to the equivalent and simpler model

$$
\begin{equation*}
(\bar{y} \mid \mu) \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) . \tag{48}
\end{equation*}
$$

Unit-Information Prior

In this model $k_{j}=1$ and $\theta_{j}=\mu$; the likelihood function is

$$
\begin{equation*}
l(\mu \mid \bar{y}) \sim N\left(\bar{y}, \frac{\sigma^{2}}{n}\right) \tag{49}
\end{equation*}
$$

from which we can see directly that $\hat{I}_{j}^{-1}=\frac{\sigma^{2}}{n}$, so a unit-information prior is

$$
\begin{equation*}
\mu \sim N\left(\bar{y}, \sigma^{2}\right) \tag{50}
\end{equation*}
$$

This also makes good intuitive sense: with this prior you get the same posterior as if you had (a) an improper, completely flat prior on μ with $\mathbf{0}$ information content and (b) a data set of $(n+1)$ observations with mean equal to the \bar{y} observed in the actual data set of n observations.

Notice that, like Jeffrey's prior - $p\left(\theta_{j} \mid M_{j}\right)=c\left|\widehat{I}_{j}\right|^{\frac{1}{2}}$, chosen
to achieve both diffuseness and invariance under reparameterization - this unit-information prior depends on the data, but in both cases the dependence is
rather gentle: as we saw in the example above, a unit-information prior is equivalent to (a) a completely flat prior and (b) a data set of $(n+1)$ observations having the same sufficient statistics as those observed in the actual data set, and with moderate n this amounts to a quite diffuse prior indeed.

Why BIC? As derived above, using the unit-information prior (43) we get

$$
\begin{equation*}
\log p\left(y \mid M_{j}\right)=\log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)-\frac{k_{j}}{2} \log n+O(1) \tag{51}
\end{equation*}
$$

This approximation has the extremely desirable property that it's free of the hideous instability of integrated likelihoods with respect to tiny details, in how diffuse priors are specified, that do not arise directly from the science of the problem; in my view, if you're going to use Bayes factors to choose among models, you're well advised to use a method like BIC that protects you from yourself in mis-specifying those tiny details.

Unit-Information Prior (continued)

The previous unit-information prior (UIP) could be called an asymptotically-conjugate UIP, because it depends on the likelihood function being approximately multivariate normal with large n; as pointed out by someone in class, this has the potentially undesirable property in small samples that it may not respect the range of possible parameter values (e.g., placing a normal prior on a parameter that lives on $(0,1)$).

It turns out that in any given problem there may be more than one UIP; let's try for a small-sample-conjugate UIP that remedies the range problem.

Example: Poisson sampling model, conjugate prior: for

$$
i=1, \ldots, n
$$

$$
\begin{align*}
\lambda & \sim \Gamma(\alpha, \beta) \tag{52}\\
\left(y_{i} \mid \lambda\right) & \stackrel{\text { IID }}{\sim} \operatorname{Poisson}(\lambda) ;
\end{align*}
$$

with this model $(\lambda \mid y) \sim \Gamma(\alpha+s, \beta+n)$, where $s=\sum_{i=1}^{n} y_{i}$ (a sufficient statistic).

Q: What choices of α and β achieve the goals of the UIP (prior worth one observation, posterior with this prior equivalent to \{flat prior + data set of $(n+1)$ observations having the same sufficient statistics as those observed in the actual data set $\}$)?

A: In this model the prior sample size is β, so set that to 1; the posterior mean with the $\Gamma(\alpha, \beta)$ prior is $\frac{\alpha+s}{\beta+n}$; a completely flat prior would be equivalent to $\Gamma(0,0)$, leading to a posterior mean of $\bar{y}=\frac{s}{n}$; so set
$\left(\beta=1, \frac{\alpha+s}{\beta+n}=\bar{y}\right)$ and solve for α, obtaining $\alpha=\bar{y}$; thus a small-sample-conjugate UIP for this sampling model is $\lambda \sim \Gamma(\bar{y}, 1)$.

Diffuse Priors

Even faster: the data mean is \bar{y}; the posterior mean is a weighted average of the prior and data means; to get a posterior mean of \bar{y}, set the prior mean $\frac{\alpha}{\beta}=\bar{y}$; set the prior sample size $\beta=1 ; \rightarrow \alpha=\bar{y}$.

Example: Bernoulli sampling model, conjugate prior: for $i=1, \ldots, n$,

$$
\begin{align*}
\theta & \stackrel{\sim}{\sim} \operatorname{Beta}(\alpha, \beta) \tag{53}\\
\left(y_{i} \mid \theta\right) & \stackrel{\text { ID }}{\sim} \operatorname{Bernoulli}(\theta) ;
\end{align*}
$$

you can show (take-home test 2) that the small-sample-conjugate UIP is $\operatorname{Beta}(\bar{y}, 1-\bar{y})$.

Further refinement: ϵ-information conjugate prior for any $\epsilon>0$ - follow this line of reasoning with ϵ in place of a prior sample size of 1 ; in the Gaussian, Poisson and Bernoulli sampling models you get $\mu \sim N\left(\bar{y}, \frac{\sigma^{2}}{\epsilon}\right)$, $\lambda \sim \Gamma(\epsilon \bar{y}, \epsilon)$, and $\theta \sim \operatorname{Beta}(\epsilon \bar{y}, \epsilon(1-\bar{y}))$, respectively; is this worth pursuing in practice? (take-home test 2).

To clarify the role of, and potential difficulties with, diffuse priors:

Bayesian task 1: given your data set $y=\left(y_{1}, \ldots, y_{n}\right)$ and a parametric model $M_{j}:\left(y \mid \theta_{j}, M_{j}\right) \sim p\left(y \mid \theta_{j}, M_{j}\right)$ (with parameter vector θ_{j} of length k_{j}) on which you're willing to condition, learn about θ_{j} from the data, assuming little relevant information about θ_{j} external to y.

In this task, as long as n is decently large (relative to k_{j}),
the manner in which you specify a diffuse prior $p\left(\theta_{j} \mid M_{j}\right)$ won't matter much; by our earlier asymptotic results, two such priors will lead to essentially the same posterior.

Diffuse Priors (continued)

Bayesian task 2: given y, compare two or more models M_{j} to see if one is better than the other.

In this task, if you use Bayes factors based on either the Monte-Carlo approximation

$$
\begin{equation*}
p\left(y \mid M_{j}\right) \doteq \frac{1}{N} \sum_{i=1}^{N} p\left(y \mid \theta_{i j}^{*}, M_{j}\right) \tag{54}
\end{equation*}
$$

(where N is large and the $\theta_{i j}^{*}$ are IID draws from the prior $p\left(\theta_{j} \mid M_{j}\right)$) or the full Laplace approximation

$$
\log p\left(y \mid M_{j}\right) \doteq \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+\log p\left(\widehat{\theta}_{j} \mid M_{j}\right)
$$

$$
\begin{equation*}
+\frac{k_{j}}{2} \log 2 \pi-\frac{1}{2} \log \left|\widehat{I}_{j}\right| \tag{55}
\end{equation*}
$$

(in which $\hat{\theta}_{j}$ is the MLE of the parameter vector θ_{j} under model M_{j} and \hat{I}_{j} is the observed information matrix for model M_{j}), the manner in which you specify a diffuse prior $p\left(\theta_{j} \mid M_{j}\right)$ can matter a great deal, even with large n.
I'm aware of two remedies: (a) use Laplace with the asymptotically-conjugate UIP (which is equivalent to BIC), or Laplace with some other UIP (the combination should be stable with respect to the diffuseness), or (b) do your model comparison with something other than Bayes factors (more on this below).

Why is BIC called the Bayesian information criterion?

$$
\begin{equation*}
\log p\left(y \mid M_{j}\right) \doteq \log p\left(y \mid \hat{\theta}_{j}, M_{j}\right)-\frac{k_{j}}{2} \log n \tag{56}
\end{equation*}
$$

People often work with a multiple of this for model comparison (although Schwarz himself proposed (56)):

$$
\begin{equation*}
B I C\left(M_{j} \mid y\right)=-2 \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+k_{j} \log n \tag{57}
\end{equation*}
$$

(the -2 multiplier comes from deviance considerations (see below)).

Information Criteria

With the -2 multiplier, good models have small values of BIC.

$$
\begin{equation*}
B I C\left(M_{j} \mid y\right)=-2 \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+k_{j} \log n \tag{58}
\end{equation*}
$$

The first term on the right side rewards the quality of the model fit; the better the model fits the data, the bigger $\log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)$ will be.

But you can always make the fit better just by including more parameters (think of the IHGA case study, with the model $\left(y_{i} \mid \lambda_{i}\right) \stackrel{\text { indep }}{\sim}$ Poisson $\left(\lambda_{i}\right)$, with n observations and n parameters; by taking $\hat{\lambda}_{i} y_{i}$ the model fits the data perfectly), so we need a penalty for making the model overly complicated.

The second term on the right side, $k_{j} \log n$, penalizes model complexity, and BIC does this at a $\log n$ rate for each new parameter added; the model with the lowest BIC will achieve the best trade-off between model fit and model complexity (at least as BIC measures these quantities; as we'll see, there are other ways to measure them).

By now there are many proposed information criteria (IC) for model selection, and this is the way most of them operate, by creating a tug of war between model fit and model complexity.

In 1974, reasoning along different (and, in my view, ad hoc) lines, Hirotugu Akaike (now an emeritus statistician at the Institute of Statistical Mathematics in Tokyo) proposed what he called AIC:

$$
\begin{equation*}
A I C\left(M_{j} \mid y\right)=-2 \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+2 k_{j} . \tag{59}
\end{equation*}
$$

He (coyly) proposed the name "an information criterion"
(AIC) for it; note (importantly) that it penalizes model complexity only at an $O(1)$ rate.

DIC

By choosing the $k_{j} \log n$ penalty for complexity, BIC has the arguably important property of consistency in model selection: if the actual data-generating model M^{*} is in the set $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots\right\}$ over which you're assessing your model uncertainty, then as n increases with \mathcal{M} fixed the probability that BIC selects M^{*} goes to 1 .

With the $2 k_{j}$ penalty for complexity, AIC fails to achieve model-selection consistency; with even moderate n you can see that $2 k_{j}<k_{j} \log n$, so AIC tends to select overly-complicated models (compared with the BIC consistency standard).

There's another IC-based Bayesian model-selection criterion it's good to know about: the deviance information criterion (DIC).

The deviance for a model M_{j} measures the fit of M_{j} (on the log likelihood scale) when compared to the best possible fit you could achieve; it's defined to be

$$
\begin{equation*}
D\left(M_{j} \mid y\right)=-2\left[\log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)-\log p\left(y \mid \hat{\theta}_{S}, M_{S}\right)\right] \tag{60}
\end{equation*}
$$

in which $\hat{\theta}_{j}$ is the MLE under model M_{j} and $\hat{\theta}_{S}$ is the vector of MLEs from a saturated model M_{S} with a parameter for every observation (so that the model fit is as good as it can be).

Example: Gaussian with known variance σ^{2} and unknown mean $\mu-M_{j}:\left(y_{i} \mid \mu\right) \stackrel{\text { IID }}{\sim} N\left(\mu, \sigma^{2}\right), i=1, \ldots, n$.

We already know that in this model (with $\theta_{j}=\mu$)
$\log p\left(y \mid \theta_{j}, M_{j}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}$,

DIC (continued)

and the MLE for μ is \bar{y}, so

$$
\begin{equation*}
\log p\left(y \mid \widehat{\theta}_{j}^{2}, M_{j}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \tag{62}
\end{equation*}
$$

Here the saturated model corresponding to M_{j} (one parameter for each data point) is

$$
M_{S}:\left(y_{i} \mid \mu_{i}\right) \stackrel{\text { indep }}{\sim} N\left(\mu_{i}, \sigma^{2}\right), i=1, \ldots, n ;
$$

$$
\text { thus } \theta_{S}=\left(\mu_{1}, \ldots, \mu_{n}\right) \text { and }
$$

$$
\begin{equation*}
\log p\left(y \mid \theta_{S}, M_{S}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu_{i}\right)^{2} \tag{63}
\end{equation*}
$$

$$
\text { the MLE of } \theta_{S} \text { is } \hat{\theta}_{S}=\left(y_{1}, \ldots, y_{n}\right) \text { and }
$$

$$
\begin{equation*}
\log p\left(y \mid \widehat{\theta}_{S}, M_{S}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \sigma^{2} \tag{64}
\end{equation*}
$$

so the deviance is

$$
\begin{align*}
D\left(M_{j} \mid y\right) & =-2\left[\log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)-\log p\left(y \mid \widehat{\theta}_{S}, M_{S}\right)\right] \\
& =\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} . \tag{65}
\end{align*}
$$

The reason for the -2 in the definition of BIC, AIC and the deviance is that with the -2 in front of the log likelihood, the asymptotic repeated-sampling behavior of quantities related to the deviance is χ^{2}; for example, you know from AMS 205 that in the IID Gaussian model with unknown mean and variance, $\frac{(n-1) \hat{\sigma}^{2}}{\sigma^{2}} \sim_{R S} \chi_{n-1}^{2}$ where $\widehat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$, but in this case $\frac{(n-1) \hat{\sigma}^{2}}{\sigma^{2}}=D\left(M_{j} \mid y\right)$ so the deviance even has a small-sample χ^{2} story in this model.

It's often a pain to work with the $\log p\left(y \mid \hat{\theta}_{S}, M_{S}\right)$ term in the deviance (e.g., sometimes it's not so clear what the saturated model should be); fortunately, if you're comparing two models M_{1} and M_{2} on the same data set,

DIC (continued)

(a) it's obviously natural to work with quantities like [$\left.D\left(M_{2} \mid y\right)-D\left(M_{1} \mid y\right)\right]$ and (b) the saturated model is the same for both M_{1} and M_{2}, so you don't have to compute $\log p\left(y \mid \widehat{\theta}_{S}, M_{S}\right)$ because it cancels in the subtraction:

$$
\begin{equation*}
D\left(M_{2} \mid y\right)-D\left(M_{1} \mid y\right)=-2\left[\log p\left(y \mid \hat{\theta}_{2}, M_{2}\right)-\log p\left(y \mid \widehat{\theta}_{1}, M_{1}\right)\right] \tag{66}
\end{equation*}
$$

the difference of maximum log likelihood values under the two models; for this reason the deviance is often simply defined as

$$
\begin{equation*}
D\left(M_{j} \mid y\right)=-2 \log p\left(y \mid \widehat{\theta}_{j}, M_{j}\right)+c . \tag{67}
\end{equation*}
$$

whenever it's to be used solely for model comparison on the same data set.

OK, now that we know what deviance is, what's DIC?
Given a parametric model $M_{j}:\left(y \mid \theta_{j}, M_{j}\right) \sim p\left(y \mid \theta_{j}, M_{j}\right)$, the WinBUGS people (Spiegelhalter et al., 2002) define the deviance information criterion (DIC) (by analogy with other information criteria) to be an estimate $D\left(\bar{\theta}_{j}\right)$ of the model (lack of) fit (as measured by the deviance: $\left.D\left(\theta_{j}\right)=-2 \log p\left(y \mid \theta_{j}, M_{j}\right)\right)$ plus a penalty for complexity equal to twice the effective number of parameters $p_{D j}$ of the model:

$$
\begin{equation*}
D I C\left(M_{j} \mid y\right)=D\left(\bar{\theta}_{j}\right)+2 \widehat{p}_{D j}, \tag{68}
\end{equation*}
$$

where $\bar{\theta}_{j}$ is the posterior mean of θ_{j}; they suggest that models with Iow DIC values are to be preferred over those with higher values.

When $p_{D j}$ is difficult to read directly from the model (e.g., in complex hierarchical models, especially those with
random effects), they motivate the following estimate, which is easy to compute from standard MCMC output:

DIC (continued)

$$
\begin{equation*}
\widehat{p}_{D j}=\overline{D\left(\theta_{j}\right)}-D\left(\bar{\theta}_{j}\right), \tag{69}
\end{equation*}
$$

i.e., the difference between the posterior mean of the deviance and the deviance evaluated at the posterior mean of the parameter vector (WinBUGS has a button to estimate these quantities, but it's also easy to write your own MCMC code to estimate DIC: $-2 \log p\left(y \mid \theta_{j}, M_{j}\right)$ is just a scalar-valued function of the parameter vector that can be monitored as another column in the MCMC data set).

With this particular way of estimating $p_{D j}$, DIC becomes

$$
\begin{equation*}
D I C\left(M_{j} \mid y\right)=2 \overline{D\left(\theta_{j}\right)}-D\left(\bar{\theta}_{j}\right) \tag{70}
\end{equation*}
$$

So far this just looks like a Bayesian version of AIC, and indeed DIC (like AIC) is not asymptotically consistent
(this doesn't bother Spiegelhalter et al.: "We are not greatly concerned about this: we neither believe in a true model nor would we expect the list of models being
considered to remain static as the sample size increases"); it does have three advantages over AIC:

- it's (small-sample) Bayesian, whereas AIC is (large-sample) likelihood-based (i.e., with small n and non-Gaussian likelihoods, DIC's emphasis on posterior means rather than likelihood modes may yield better calibration performance in choosing a good model);
- it's readily computed from MCMC output; and
- it provides a way to estimate the effective number of parameters in a model in settings (e.g., hierarchical models with random effects) in which it's not obvious how to count the number of parameters.

But DIC also has a big disadvantage: it turns out that, because of the line of reasoning leading to $\hat{p}_{D j}$,

DIC (continued)

the approximation $\overline{D\left(\theta_{j}\right)}-D\left(\bar{\theta}_{j}\right)$ only works well if you can find a parameterization in which the posterior distribution $p\left(\theta_{j} \mid y, M_{j}\right)$ is close to (multivariate) normal.

Example: $y=(0,0,1,1,1,1,2,2,2,2,3,3,3,4,4,5,6)$ is a data set generated from the negative binomial distribution with parameters $(p, r)=(0.82,10.8)$ (in WinBUGS notation); y has mean 2.35 and VTMR 1.22.

Using standard diffuse priors for p and r as in the BUGS examples manuals, the effective number of parameters p_{D} for the negative binomial model (which fits the data quite well) is estimated at $\mathbf{- 6 6 . 2}$, leading to a DIC value of $\mathbf{- 1 . 5}$:

洛: WinBUGS14 : $:$ WinBUGS14 (0) \otimes 12:21 PM

DIC (continued)

The problem, as mentioned earlier, is that in the original parameterization, $0<p<1, r>0$ and the marginal posteriors for both of these quantities were violently non-normal; forcing WinBUGS to parameterize instead in terms of $l p=\log \left(\frac{p}{1-p}\right)$ and $l r=\log (r)$ (by placing priors on these transformed parameters instead of on p and r) improves the DIC approximation dramatically, but the estimate of $p_{D j}$ is still too low by 43% (the correct number of parameters is 2 , and DIC estimates it as 1.15).

The problem is even worse in mixture models - for example, working with a sampling distribution that's a mixture of two Gaussians, as in
$p\left(y_{i} \mid \gamma, \mu_{1}, \sigma_{1}^{2}, \mu_{2}, \sigma_{2}^{2}, M_{j}\right)=\gamma N\left(y ; \mu_{1}, \sigma_{1}^{2}\right)+(1-\gamma) N\left(y ; \mu_{2}, \sigma_{2}^{2}\right)$; in these models DIC performs so badly that the WinBUGS people had to disable the DIC button.

A Predictive Criterion

I said back on page 6 of this set of notes that it would be good to have a rather general-purpose utility-based way to decide if M_{2} is better than M_{1}, and I promised two ideas along these lines; Bayes factors were the first idea; here's the second.

A hallmark of good scientific work is that good models make good predictions and bad models make bad predictions; this suggests developing a utility structure based on predictive accuracy.
Consider first a setting in which the y_{i} are real-valued and the models to be compared are (as before)

$$
\begin{gather*}
M_{j}:\left\{\begin{array}{c}
\left(\theta_{j} \mid M_{j}\right) \sim p\left(\theta_{j} \mid M_{j}\right) \\
\left(y \mid \theta_{j}, M_{j}\right) \sim p\left(y \mid \theta_{j}, M_{j}\right)
\end{array}\right\}, \tag{71}\\
\text { for } y=\left(y_{1}, \ldots, y_{n}\right) .
\end{gather*}
$$

I can readily construct a posterior predictive distribution for a new data value y^{*} under each model:

$$
\begin{align*}
p\left(y^{*} \mid y, M_{j}\right) & =\int p\left(y^{*} \mid \theta_{j}, y, M_{j}\right) p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{j} \\
& =\int p\left(y^{*} \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{j} \tag{72}
\end{align*}
$$

This is similar to an integrated likelihood except that we take the weighted average of the sampling distribution, weighted by the posterior for θ_{j} in model M_{j}, which is reason for excitement: all of that nonsense about diffuse priors in Bayes factors will disappear in this approach. How should I assess the quality of model M_{j} 's predictions?

If I had new data values y^{*}, I could compare them (in some way) with their predictive distributions $p\left(y^{*} \mid y, M_{j}\right)$ under all of the models, and the model with the best predictions would be favored; how should this be quantified?

Log Scoring

Evidently I need two things: new data values y^{*}, and a way to compare a number y^{*} with a predictive distribution $p\left(y^{*} \mid y, M_{j}\right)$ for it.
One natural approach to obtaining new data values is cross-validation: partition the data into two (non-overlapping and exhaustive) subsets y_{M} (for modeling) and y_{V} (for validation), and fit predictive distributions $p\left(y_{V} \mid y_{M}, M_{j}\right)$ for the validation values given the modeling values.

A simple way to do this is with a jack-knife (leave-one-out) form of cross-validation: let y_{-i} stand for the data set y with observation i omitted and compare y_{i} with $p\left(y_{i} \mid y_{-i}, M_{j}\right)$ for all $i=1, \ldots, n$.
OK, so how do I compare a data point y_{i} with its predictive distribution $p\left(y_{i} \mid y_{-i}, M_{j}\right)$?
This is called the problem of scoring a predictor, and it's been given a lot of thought in fields like meteorology (where people predict aspects of the weather every day).

Good scoring rules (according to definitions of the following terms that I'll omit for brevity; see, e.g., O'Hagan and Forster, 2004) are impartial, symmetric and proper;
math fact: all impartial, symmetric and proper scoring rules are linear functions of the logarithm of the height of the predictive density $p\left(y_{i} \mid y_{-i}, M_{j}\right)$ at the actual observed value y_{i} (i.e., log scores).
Once we have these \log scores $\log p\left(y_{i} \mid y_{-i}, M_{j}\right)$, one for each data value, a natural way to combine them is to average them.

This suggest a model-selection criterion I'll call the cross-validation log score $L S_{C V}$:

$$
\begin{equation*}
L S_{C V}\left(M_{j} \mid y\right)=\frac{1}{n} \sum_{i=1}^{n} \log p\left(y_{i} \mid y_{-i}, M_{j}\right) \tag{73}
\end{equation*}
$$

Log Scoring (continued)

This can be given a direct decision-theoretic justification: with a utility function for model j given by

$$
\begin{equation*}
U\left(M_{j} \mid y\right)=\log p\left(y^{*} \mid y, M_{j}\right), \tag{74}
\end{equation*}
$$

where y^{*} is a future data value, the expectation in the process of maximizing expected utility (MEU) is over our uncertainty about y^{*}; this expectation can be estimated (assuming exchangeability) by $L S_{C V}\left(M_{j} \mid y\right)$.

The naive approach to calculating $L S_{C V}$, when MCMC is needed to compute the predictive distributions, requires n MCMC runs, one for each omitted observation; it would be nice to have a version of log scoring that could be evaluated with a single MCMC run for each model.

This motivates what Draper and Krnjajić (2010) call the full-sample log score: in the one-sample situation, for instance, compute a single predictive distribution $p\left(y^{*} \mid y, M_{j}\right)$ for a future data value y^{*} with each model M_{j} under consideration, based on the entire data set y (without omitting any observations), and define (cf. Laud and Ibrahim, 1995)

$$
\begin{equation*}
L S_{F S}\left(M_{j} \mid y\right)=\frac{1}{n} \sum_{i=1}^{n} \log p\left(y_{i} \mid y, M_{j}\right) \tag{75}
\end{equation*}
$$

This uses the data twice, but does so in a way that matters less and less as n increases (and already matters little for even moderate n).

Remarkably, Draper and Krnjajić (2010) have shown that not only is $L S_{F S}$ faster to compute than naive implementations
of $L S_{C V}$, it can actually do a better job of model discrimination in small samples than either $L S_{C V}$ or DIC (see my 4 Feb 2010 talk posted on the course web page).

- The log score approach works equally well with parametric and nonparametric Bayesian models; $D I C$ is only defined for parametric models.

Log Scoring (continued)

- When parametric model M_{j} with parameter vector θ_{j} is fit via MCMC, the predictive ordinate $p\left(y^{*} \mid y, M_{j}\right)$ in $L S_{F S}$ is easy to approximate: with m identically distributed (not necessarily independent) MCMC monitoring draws $\left(\theta_{j}\right)_{k}^{*}$ from $p\left(\theta_{j} \mid y, M_{j}\right)$,

$$
\begin{align*}
p\left(y^{*} \mid y, M_{j}\right) & =\int p\left(y^{*} \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{i} \\
& =E_{\left(\theta_{j} \mid y, M_{j}\right)}\left[p\left(y^{*} \mid \theta_{j}, M_{j}\right)\right] \tag{76}\\
& \doteq \frac{1}{m} \sum_{k=1}^{m} p\left(y^{*} \mid\left(\theta_{j}\right)_{k}^{*}, M_{j}\right), \quad \text { and } \\
L S_{F S}\left(M_{j} \mid y\right) & \doteq \frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{1}{m} \sum_{k=1}^{m} p\left(y_{i} \mid\left(\theta_{j}\right)_{k}^{*}, M_{j}\right)\right] .
\end{align*}
$$

Example: Revisiting the IHGA case study, four possible models for the data (not all of them good):

- Two-independent-sample Gaussian (diffuse priors);
- One-sample Poisson (diffuse prior), pretending treatment and control $\lambda \mathrm{s}$ are equal;
- Two-independent-sample Poisson (diffuse priors), which is equivalent to fixed-effects Poisson regression (FEPR); and
- Random-effects Poisson regression (REPR), because C and T variance-to-mean ratios (VTMRs) are 1.63 and 1.32, respectively:

$$
\begin{align*}
\left(y_{i} \mid \lambda_{i}\right) & \stackrel{\text { indep }}{\sim} \\
\log \left(\lambda_{i}\right) & \stackrel{\text { Poisson }\left(\lambda_{i}\right)}{=} \beta_{0}+\beta_{1} x_{i}+e_{i} \tag{77}\\
e_{i} & \stackrel{\text { IID }}{\sim} \\
\left(\beta_{0}, \beta_{1}, \sigma_{e}^{2}\right) & \sim\left(0, \sigma_{e}^{2}\right) \\
\sim & \text { diffuse },
\end{align*}
$$

where $x_{i}=1$ is a binary indicator for T / C status.

IHGA example

To use the DIC feature in WinBUGS to produce the screen shot above, I fit the REPR model as usual, did a burn-in of 1,000 , selected DIC as a pull-down option from the Inference menu, clicked the set button in the DIC Tool window that popped up, changed the 1,000 to 10,000 in the updates window of the Update Tool, clicked update, and then clicked DIC in the DIC Tool when the monitoring run of 10,000 was finished-the DIC results window appears, with the Dbar $(\overline{D(\theta)})$, Dhat $(D(\bar{\theta})), \mathrm{pD}\left(\widehat{p}_{D}\right)$, and DIC $(D I C(y))$ values.

IHGA example (continued)

DIC and LS results on these four models:

Model	$\overline{D(\theta)}$	$D(\bar{\theta})$	\widehat{p}_{D}	$D I C(y)$	$L S(y)$
1 (Gaussian)	1749.6	1745.6	3.99	1753.5	-1.552
2 (Poisson, common λ)	1499.9	1498.8	1.02	1500.9	-1.316
3 (FEPR, different λ s)	1495.4	1493.4	1.98	1497.4	-1.314
	1275.7	1132.0	143.2	1418.3	
4 (REPR)	1274.7	1131.3	143.5	1418.2	-1.180
	1274.4	1130.2	144.2	1418.6	

(3 REPR rows were based on different monitoring runs, all of length 10,000, to give idea of Monte Carlo noise level.)
As $\sigma_{e} \rightarrow 0$ in the REPR model, you get the FEPR model, with $p_{D}=2$ parameters; as $\sigma_{e} \rightarrow \infty$, in effect all subjects in study have their own λ and p_{D} would be 572; in between at $\sigma_{e} \doteq 0.675$ (the posterior mean), WinBUGS estimates that there are about 143 effective parameters in REPR model, but its deviance $D\left(\bar{\theta}_{j}\right)$ is so much lower that it wins the DIC contest hands down.

The correlation between LS and DIC across these four models is $\mathbf{- 0 . 9 8}$.

Example of $L S_{F S}$ Calculations

Case Study: Measurement of physical constants. What used to be called the National Bureau of Standards (NBS) in Washington, DC, conducts extremely high precision measurement of physical constants, such as the actual weight of so-called check-weights that are supposed to serve as reference standards (like the official kg).
In 1962-63, for example, $n=100$ weighings (listed below) of a block of metal called NB10, which was supposed to weigh exactly 10 g , were made under conditions as close to IID as possible (Freedman et al., 1998); measurements are given as micrograms below 10g.

Value	375	392	393	397	398	399	400	401
Frequency	1	1	1	1	2	7	4	12
Value	402	403	404	405	406	407	408	409
Frequency	8	6	9	5	12	8	5	5
Value	410	411	412	413	415	418	423	437
Frequency	4	1	3	1	1	1	1	1

Q: How much does NB10 really weigh?
The graph below is a normal qqplot of the 100 measurements $y=\left(y_{1}, \ldots, y_{n}\right)$, which have a mean of $\bar{y}=404.6$ (the units are micrograms below $\mathbf{1 0 g}$) and an SD of $s=6.5$.

$L S_{F S}$ Calculations (continued)

You can see that the data are symmetric but heavy-tailed; two models to compare would be M_{1} : Gaussian with unknown mean and variance (probably doesn't fit well) and M_{2} : t with unknown mean, variance and shape (should fit better).

The files ams207-nb10-model2.txt, ams207-nb10-data.txt, and ams207-nb10-inits2.txt on the course web page contain the WinBUGS implementation of

$$
\begin{gathered}
M_{2}: \mu \sim N(0, \text { precision }=1.0 \mathrm{E}-6), \sigma \sim U(0,7.0), \\
\nu \sim U(2.0,12.0),\left(y_{i} \mid \mu, \sigma, \nu\right) \stackrel{\text { IID }}{\sim} t_{\nu}\left(\mu, \sigma^{2}\right)
\end{gathered}
$$

I've stored the μ, σ and ν columns of the MCMC data set from this model in files called nb10-model2-mu.txt, nb10-model2-sigma.txt and nb10-model2-nu.txt, respectively.

The DIC value for this model is $\mathbf{6 1 8 . 2}$ (note that DIC has misbehaved again: $p_{D 2}$ is estimated to be $\mathbf{- 1 . 1}$; I tried

$L S_{F S}$ Calculations (continued)

diffuse priors on $\log \sigma$ and $\log \nu$ to improve $\widehat{p}_{D 2}$, but that made it worse (-4.4)).

I go through a similar process with the files
nb10-model1.txt, nb10-data.txt, and nb10-inits1.txt to fit

$$
\begin{gathered}
M_{1}: \mu \sim N(0, \text { precision }=1.0 \mathrm{E}-6), \sigma \sim U(0,9.0), \\
\left(y_{i} \mid \mu, \sigma\right) \stackrel{\text { IID }}{\sim} N\left(\mu, \sigma^{2}\right)
\end{gathered}
$$

and store the μ and σ columns of the MCMC data set in files called nb10-model1-mu.txt and nb10-model1-sigma.txt, respectively; this time the DIC value is $\mathbf{6 6 0 . 1}$ and DIC is better-behaved (p_{D} is estimated to be 1.9, which is about right).

On the basis of DIC I would conclude that M_{2} (618.2 with 3 parameters) is (substantially) better than M_{1} (660.1 with 2).

Here's some R code (also available on the web page) to compute the log score values for both models.

```
> y <- dget( "nb10-data.txt" )
> y <- sort( y$y )
> mu.t <- matrix( scan( "nb10-model2-mu.txt" ),
    100000, 2, byrow = T ) [ , 2 ]
> sigma.t <- matrix( scan( "nb10-model2-sigma.txt" ),
    100000, 2, byrow = T ) [ , 2 ]
> nu.t <- matrix( scan( "nb10-model2-nu.txt" ),
    100000, 2, byrow = T ) [ , 2 ]
```

> mu.G <- matrix (scan("nb10-model1-mu.txt"),
100000, 2, byrow $=\mathrm{T}$) [, 2]
> sigma.G <- matrix (scan("nb10-model1-sigma.txt"),
100000, 2, byrow = T) [, 2]

$L S_{F S}$ Calculations (continued)

```
> dt.s <- function( y, mu, sigma, nu ) {
> exp( lgamma( ( nu + 1 ) / 2 ) - ( ( nu + 1 ) / 2 ) *
> log( 1 + ( y - mu )^2 / ( nu * sigma^2 ) ) -
> lgamma( nu / 2 ) - log( nu * pi ) / 2 - log( sigma ) )
> }
> LS.contributions <- matrix( 0, 100, 2 )
> for ( j in 1:100 ) {
> LS.contributions[ j, 1 ] <- log( mean( dt.s( y[ j ],
> mu.t, sigma.t, nu.t ) ) )
> LS.contributions[ j, 2 ] <- log( mean( dnorm( y[ j ],
> mu.G, sigma.G ) ) )
> }
> cbind( y, LS.contributions,
> 0 + LS.contributions[ , 1 ] > LS.contributions[ , 2 ] )
                t
                better
                                than
                t Gaussian G
```

 [1,] \(375-8.586208-12.2049541\)
 \([2] 392-5.349809-\),
 [3,] \(393-5.077313-4.3626930\)
 \([4] 397-3.903555-\),
 \([5] 398-3.602015-\),
 [6,] \(398-3.602015-3.3094580\)
 [7,] \(399-3.307381-3.1666240\)
 [8,] \(399-3.307381-3.1666240\)

$L S_{F S}$ Calculations (continued)

$[9]$,	399	-3.307381	-3.166624	0
$[10]$,	399	-3.307381	-3.166624	0
$[11]$,	399	-3.307381	-3.166624	0
$[12]$,	399	-3.307381	-3.166624	0
$[13]$,	399	-3.307381	-3.166624	0
$[14]$,	400	-3.028685	-3.046933	1
$[15]$,	400	-3.028685	-3.046933	1
$[16]$,	400	-3.028685	-3.046933	1
$[17]$,	400	-3.028685	-3.046933	1
$[18]$,	401	-2.778176	-2.950552	1
$[19]$,	401	-2.778176	-2.950552	1
$[20]$,	401	-2.778176	-2.950552	1
$[21]$,	401	-2.778176	-2.950552	1
$[22]$,	401	-2.778176	-2.950552	1
$[23]$,	401	-2.778176	-2.950552	1
$[24]$,	401	-2.778176	-2.950552	1
$[25]$,	401	-2.778176	-2.950552	1
$[26]$,	401	-2.778176	-2.950552	1
$[27]$,	401	-2.778176	-2.950552	1
$[28]$,	401	-2.778176	-2.950552	1
$[29]$,	401	-2.778176	-2.950552	1
$[30]$,	402	-2.571441	-2.877618	1
$[31]$,	402	-2.571441	-2.877618	1
$[32]$,	402	-2.571441	-2.877618	1
$[33]$,	402	-2.571441	-2.877618	1
$[34]$,	402	-2.571441	-2.877618	1
$[35]$,	402	-2.571441	-2.877618	1
$[36]$,	402	-2.571441	-2.877618	1
$[37]$,	402	-2.571441	-2.877618	1
$[38]$,	403	-2.426129	-2.828236	1
$[39]$,	403	-2.426129	-2.828236	1
$[40]$,	403	-2.426129	-2.828236	1
$[41]$,	403	-2.426129	-2.828236	1
$[42]$,	403	-2.426129	-2.828236	1
$[43]$,	403	-2.426129	-2.828236	1
$[44]$,	404	-2.358212	-2.802475	1

$L S_{F S}$ Calculations (continued)

[45,] $404-2.358212-2.8024751$
[46,] $404-2.358212-2.8024751$
[47,] $404-2.358212-2.8024751$
[48,] $404-2.358212-2.8024751$
[49,] $404-2.358212-2.8024751$
[50,] $404-2.358212-2.8024751$
[51,] $404-2.358212-2.8024751$
[52,] $404-2.358212-2.8024751$
[53,] $405-2.376305-2.8003731$
[54,] $405-2.376305-2.8003731$
[55,] $405-2.376305-2.8003731$
[56,] $405-2.376305-2.8003731$
[57,] $405-2.376305-2.8003731$
[58,] $406-2.477698-2.8219321$
[59,] $406-2.477698-2.8219321$
[60,] $406-2.477698-2.8219321$
[61,] $406-2.477698-2.8219321$
[62,] $406-2.477698-2.8219321$
[63,] $406-2.477698-2.8219321$
[64,] $406-2.477698-2.8219321$
[65,] $406-2.477698-2.8219321$
[66,] $406-2.477698-2.8219321$
[67,] $406-2.477698-2.8219321$
[68,] $406-2.477698-2.8219321$
[69,] $406-2.477698-2.8219321$
[70,] $407-2.649778-2.8671231$
[71,] $407-2.649778-2.8671231$
[72,] $407-2.649778-2.8671231$
[73,] $407-2.649778-2.8671231$
[74,] $407-2.649778-2.8671231$
[75,] $407-2.649778-2.8671231$
[76,] $407-2.649778-2.8671231$
[77,] $407-2.649778-2.8671231$
[78,] $408-2.875393-2.9358801$
[79,] $408-2.875393-2.9358801$
[80,] $408-2.875393-2.9358801$

$\underline{L S_{F S} \text { Calculations (continued) }}$

$$
\begin{array}{lllll}
{[81,]} & 408 & -2.875393 & -2.935880 & 1 \\
{[82,]} & 408 & -2.875393 & -2.935880 & 1 \\
{[83,]} & 409 & -3.137771 & -3.028107 & 0 \\
{[84,]} & 409 & -3.137771 & -3.028107 & 0 \\
{[85,]} & 409 & -3.137771 & -3.028107 & 0 \\
{[86,]} & 409 & -3.137771 & -3.028107 & 0 \\
{[87,]} & 409 & -3.137771 & -3.028107 & 0 \\
{[88,]} & 410 & -3.422943 & -3.143672 & 0 \\
{[89,]} & 410 & -3.422943 & -3.143672 & 0 \\
{[90,]} & 410 & -3.422943 & -3.143672 & 0 \\
{[91,]} & 410 & -3.422943 & -3.143672 & 0 \\
{[92,]} & 411 & -3.720225 & -3.282413 & 0 \\
{[93,]} & 412 & -4.021816 & -3.444136 & 0 \\
{[94,]} & 412 & -4.021816 & -3.444136 & 0 \\
{[95,]} & 412 & -4.021816 & -3.444136 & 0 \\
{[96,]} & 413 & -4.322196 & -3.628616 & 0 \\
{[97,]} & 415 & -4.905384 & -4.064801 & 0 \\
{[98,]} & 418 & -5.710652 & -4.882504 & 0 \\
{[99,]} & 423 & -6.845648 & -6.656119 & 0 \\
{[100,]} & 437 & -9.016222 & -13.896384 & 1
\end{array}
$$

> sum(LS.contributions [, 1] > LS.contributions [, 2]) /
$>$ length(y)
[1] 0.71
\# Thus t model is predictively better than Gaussian for \# 71% of the data points.

LS.t <- mean(LS.contributions [, 1])

LS.G <- mean(LS.contributions [, 2])
c (LS.t, LS.G)
[1] -3.082331 -3.262142

$L S_{F S}$ Calculations (continued)

Although it's not immediately obvious, the log score for the t model (-3.08) is substantially higher than that for the Gaussian model (-3.26), so $L S$ and $D I C$ have reached the same conclusion here.
> plot(y, LS.contributions [, 1],
$>y \operatorname{ylim}=c(\min ($ LS.contributions $)$,
$>\max ($ LS.contributions)),
> ylab = 'Log Score Contributions')
> lines (y, LS.contributions [, 1], lty = 1)
> points (y, LS.contributions [, 2], pch = 2)
> lines (y, LS.contributions [, 2], lty = 2)
> legend (397.5, -10, c("t", "Gaussian"), pch =c(1, 2))

The t model fits better both in the tails (where the most influential observations are from the Gaussian point of view) and in the center (where most of the data values are).

Is M_{1} good enough?

On page 5 of this set of notes I argued that the two basic questions in model search are "Is M_{1} better than M_{2} ? and "Is M_{1} good enough?" ; we've talked quite a bit about the former question; what about the latter?

As I argued on page 5, answering the question "Is M_{1} good enough?" requires first answering another question "Good enough for what purpose?" - and this makes answering both of the two basic questions a decision problem, requiring the specification of a utility function that quantifies your value judgments among good and bad possibilities.

So this question - "Is M_{1} good enough?" - can't be answered in a general way; but we can make progress on a general answer to a related question: "Could the data have arisen from M_{1} ?".

This is a model-checking question, and there are many ways to try to answer it: all sorts of model-specific diagnostics will occur to you (graphical [e.g., plot residuals] and numerical), and you should use them (e.g., the variance-to-mean-ratios in the E and C groups in the IHGA case study were substantially greater than 1 , so the IGHA data could not have come from a Poisson model).

But here's another general-purpose tool along these lines: M_{1} gives a particular value of $L S_{F S}\left(M_{1} \mid y\right)$ with the actual data set y; how unusual is this value if M_{1} really were the data-generating mechanism?

To answer this question we can simulate from M_{1} many times, developing a distribution of $L S_{F S}$ values, and see how unusual the actual data set's log score is in this distribution (Draper and Krnjajić, 2010).

Posterior Predictive Model-Checking

This is related to the posterior predictive model-checking method of Gelman, Meng and Stern (1996; see GCSB chapter 6); however, this sort of thing cannot be done naively, or the result will be poor calibration - indeed, Robins et al. (2000) demonstrated that the Gelman et al. procedure may be (sharply) conservative (and yet GCSB have not changed their posterior predictive text to reflect this in the current (second) edition of their book, published in 2004).

Using a modification of an idea in Robins et al., Milovan and I have developed a method for accurately calibrating the log score scale.

Inputs to our procedure: (1) A data set (e.g., with regression structure); (2) A model (can be parametric, non-parametric, or semi-parametric).

Simple example: data set $y=(1,2,2,3,3,3,4,6,7,11)$,
Given model (*)
(λ) \sim Gamma(0.001, 0.001)
$\left(y_{i} \mid \lambda\right) \stackrel{\text { IID }}{\sim}$ Poisson (λ)

Step 1:

Calculate $L S_{F S}$ for this data set; say you get $L S_{F S}=-1.1$; call this the actual log score (ALS).

Obtain the posterior for λ given y based on this data set; call this the actual posterior.

Calibrating $L S_{F S}$ Scale

Step 2:
for (i in 1:m1) \{
make a lambda draw from the actual posterior; call it lambda[i]
generate a data set of size n from the second
line of model (*) above, using
lambda = lambda[i]
compute the log score for this generated
data set; call it LS[i]
\}
The output of this loop is a vector of log scores; call this V.LS.

Locate the ALS in this distribution of $L S_{F S}$ values by computing the percentage of $L S_{F S}$ values in V.LS that are \leq ALS; call this percentage the unadjusted actual tail area (say this is 0.22).

So far this is just Gelman et al. with $L S_{F S}$ as the discrepancy function.

Milovan and I know from our own simulations and the literature (Robins et al. 2000) that this tail area (a p-value for a composite null hypothesis, e.g., Poisson (λ) with λ
unspecified) is conservative, i.e., with the 0.22 example above an adjusted version of it that's well calibrated would be smaller.

In other words, if Gelman gives you a value of $\mathbf{0 . 0 1}$ you know that there's a problem with your model (because the correct (calibrated) value would be even smaller), but if he gives you a value of 0.40 the correct (calibrated) value will be smaller and might be as small as (say) 0.04 , which might well lead you to a different conclusion.

Calibrating LSFS Scale (continued)

We've modified and implemented one of the ways suggested by Robins et al., and we've shown that it does indeed work even in rather small-sample situations, although our approach to implementing the basic idea can be computationally intensive.

Step 3:

for (j in 1:m2) \{
make a lambda draw from the actual posterior; call it lambda*.
generate a data set of size n from the second line of model (*) above, using lambda = lambda*; call this the simulated data set
repeat steps 1,2 above on this simulated data set
\}
The result will be a vector of unadjusted tail areas; call this V.P.

Compute the percentage of tail areas in V.P that are \leq the unadjusted actual tail area; this is the adjusted actual tail area.

Calibrating $L S_{F S}$ Scale (continued)

The claim is that the 3-step procedure above is well-calibrated, i.e., if the sampling part of model (*) really did generate the observed data, the distribution of adjusted actual tail areas obtained in this way would be uniform, apart from simulation noise.

Step 3 in this procedure solves the calibration problem by applying the old idea that if $X \sim F_{X}$ then $F_{X}(X) \sim U(0,1)$.

This claim can be verified by building a big loop around steps 1-3 as follows:

Choose a lambda value of interest; call it lambda.sim for (k in 1:m3) \{
generate a data set of size n from the second line of model (*) above, using lambda $=$ lambda.sim; call this the validation data set
repeat steps $1-3$ on the validation data set
\}
The result will be a vector of adjusted P-values; call this V.Pa.

We have verified (via simulation) in several simple (and some less simple) situations that the values in V.Pa are close to $U(0,1)$ in distribution.

Two examples-Poisson (λ) and Gaussian $\left(\mu, \sigma^{2}\right)$:

Uncalibrated p-values

Null Poisson model: Uncalibrated p-values

Calibrated p-values

Null Poisson model: Calibrated p-values vs uniform $(0,1)$

Uncalibrated p-values

Null Gaussian model: Uncalibrated p-values

Calibrated p-values

Null Gaussian model: Calibrated p-values vs uniform $(0,1)$

R Implementation

Here's some R code (available at the course web site) to implement our method for calibrating the log score scale in a one-sample Poisson setting, applied first to a simple data set on length of stay (LoS) in the hospital for mothers admitted to give birth and then to a simulated data set that was not generated by the Poisson model.

```
> print( y <- c( 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6 ) )
    [1] 0 1 1 1 1 1 1 2 2 2 2 3 3 4 6
> print( epsilon <- 0.001 )
[1] 0.001
> ln.poisson.gamma <- function( y, alpha, beta ) {
+
+ lgamma( alpha + y ) + alpha * log( beta /
+ (beta + 1 ) ) + y * log( 1/ (beta + 1 ) ) -
+ lgamma( alpha ) - lgamma( y + 1 )
+
+ }
> step1 <- function( y, epsilon ) {
+
+ n <- length( y )
+
+ s <- sum( y )
+
+ als <- mean( ln.poisson.gamma( y, epsilon + s,
+ epsilon + n ) )
+
+ return( c( n, s, als ) )
+
+ }
> print( step1.result <- step1( y, epsilon ) )
[1] 14.00000 29.00000 -1.71309
```

So the actual log score for the LoS data set is -1.71 , but is this unusually small if the data really were Poisson?

R Implementation (continued)

```
> step2 <- function( n, s, epsilon, als, m1 ) {
+
+ lambda <- rgamma( m1, epsilon + s, epsilon + n )
+}+\quadls <- rep( 0, m1 )
+
+ for ( i in 1:m1 ) {
+
+ y.star <- rpois( n, lambda[ i ] )
+
+ s.star <- sum( y.star )
+
+ ls[ i ] <- mean( ln.poisson.gamma( y.star,
    epsilon + s.star, epsilon + n ) )
    }
    uata <- sum( ls <= als ) / m1
    write( ls, "ls.out" )
    return( uata )
+
+ }
> m1 <- 1000
>
> print( step2.result <- step2( step1.result[ 1 ],
+ step1.result[ 2 ], epsilon, step1.result[ 3 ], m1 ) )
[1] 0.418
```

```
> v.ls <- scan( "ls.out" )
```

> v.ls <- scan("ls.out")
Read 1000 items
Read 1000 items
>
>
> hist(v.ls, nclass = 20, probability = T,
> hist(v.ls, nclass = 20, probability = T,

+ main = '', xlab = 'uncalibrated log score')
+ main = '', xlab = 'uncalibrated log score')
>
>
> abline(v = step1.result[3])

```
> abline( v = step1.result[ 3 ] )
```


R Implementation (continued)

The actual log score doesn't look at all unusual in this plot, but recall from the discussion above that it may not yet be properly calibrated.

```
> step3 <- function( y, epsilon, m1, m2 ) {
+
    step1.result <- step1( y, epsilon )
    n <- step1.result[ 1 ]
    s.actual <- step1.result[ 2 ]
    uata <- step2( step1.result[ 1 ], step1.result[ 2 ],
    epsilon, step1.result[ 3 ], m1 )
    v.p <- rep( 0, m2 )
```


R Implementation (continued)

```
+ for ( j in 1:m2 ) {
    epsilon + n )
    y.sim <- rpois( n, lambda.star )
    step1.result <- step1( y.sim, epsilon )
    v.p[ j ] <- step2( step1.result[ 1 ],
        step1.result[ 2 ], epsilon, step1.result[ 3 ], m1 )
    }
    aata <- sum( v.p <= uata ) / m2
    write( v.p, "v.p.out" )
    return( aata )
+
+ }
> m2 <- 100
>
> print( step3.result <- step3( y, epsilon, m1, m2 ) )
[1] 0.4
```

Here the recalibration has not had much effect, but (as the plots above showed) this will not always be the case.

R Implementation (continued)

```
> v.p <- scan( "v.p.out" )
Read 100 items
>
> hist( v.p, nclass = 20, probability = T, xlim = c( 0, 1 ),
+ main = ',, xlab = 'calibrated tail areas' )
>
> abline( v = step2.result )
```


For a second example let's look at a data set generated as a lognormal mixture of Poissons with a substantial VTMR.

```
> n <- 10
>
> e <- rnorm( n, 0.0, 0.5 )
>
> mu <- 0
>
> lambda <- rep( 0, n )
```


R Implementation (continued)

```
> y <- rep( 0, n )
> for ( i in 1:n ) {
+
+ lambda[ i ] <- exp(mu + e[ i ] )
+
+ y[ i ] <- rpois( 1, lambda[ i ] )
+
+ }
> print( y <- sort( y ) )
[1] 0 0 0 1 1 1 1 2 2 3 4 4
> var( y ) / mean( y )
[1] 1.555556
> print( step1.result <- step1( y, epsilon ) )
[1] 10.000000 16.000000-1.715601
> print( step2.result <- step2( step1.result[ 1 ],
+ step1.result[ 2 ], epsilon, step1.result[ 3 ], m1 ) )
[1] 0.178
> v.ls <- scan( "ls.out" )
> hist( v.ls, nclass = 20, probability = T,
+ main = '', xlab = 'uncalibrated log score' )
> abline( v = step1.result[ 3 ] )
```


R Implementation (continued)

> m2 <- 1000
> print(step3.result <- step3(y, epsilon, m1, m2))
[1] 0.099
So here's an example where the uncalibrated tail area is about twice as big as it should be.

```
> v.p <- scan( "v.p.out" )
> hist( v.p, nclass = 20, probability = T, xlim = c( 0, 1 ),
+ main = ',, xlab = 'calibrated tail areas' )
> abline( v = step2.result )
```


R Implementation (continued)

The true calibrated tail-area distribution is far from uniform, so 0.178 is actually substantially farther out in the true tail than it seems.

$L S_{C V}, L S_{F S}$ and DIC Model Discrimination

Here are three behavioral rules: maximize $L S_{C V}$, maximize $L S_{F S}$, minimize $D I C$; with (e.g.) two models to choose between, how accurately do these behavioral rules discriminate between M_{1} and M_{2} ?

Example: Consider comparing the following two models, with diffuse priors and $i=1, \ldots, n$:

$$
\begin{gather*}
M_{1}:\left\{\begin{array}{ccc}
\lambda & \sim & p(\lambda) \\
\left(y_{i} \mid \lambda\right) & \stackrel{\text { IID }}{\sim} & \text { Poisson }(\lambda)
\end{array}\right\} \text { versus } \tag{79}\\
M_{2}:\left\{\begin{array}{ccc}
\left(\beta_{0}, \sigma^{2}\right) & \underset{\sim}{\sim} & p\left(\beta_{0}, \sigma^{2}\right) \\
\left(y_{i} \mid \lambda_{i}\right) & \underset{\sim}{\sim} \\
\log \left(\lambda_{i}\right) & \underset{\sim}{\sim} & \operatorname{Poisson}\left(\lambda_{i}\right) \\
\beta_{0}+e_{i} \\
e_{i} & \underset{\sim}{\sim} & N\left(0, \sigma^{2}\right)
\end{array}\right\} \tag{80}
\end{gather*}
$$

Milovan and I generated data from M_{2} and computed $L S_{C V}, L S_{F S}$, and DIC for models M_{1} and M_{2} in full-factorial grid $\{n=32,42,56,100\},\left\{\beta_{0}=0.0,1.0\right\}$,
$\left.\sigma^{2}=0.1,0.25,0.5,1.0,1.5,2.0\right\}$, with $\mathbf{1 0 0}$ simulation replications in each cell, and monitored percentages of correct model choice (here M_{2} is always correct).

Examples of results for (e.g.) $L S_{C V}$:

$$
n=32
$$

\% Correct Decision

σ^{2}		β_{0}	
0.10	1		
0.25	49	47	
0.50	76	85	
1.00	97	100	
1.50	98	100	
2.00	100	100	

Mean Absolute Difference in $L S_{C V}$ β_{0}

σ^{2}	0	1
0.10	0.001	0.002
0.25	0.002	0.013
0.50	0.017	0.221
1.00	0.237	4.07
1.50	1.44	17.4
2.00	12.8	63.9

Even with n only 32, $L S_{C V}$ makes the right model choice more than 90% of the time when $\sigma^{2}>0.5$ for $\beta_{0}=1$ and when $\sigma^{2}>1.0$ for $\beta_{0}=0$.

Model Discrimination (continued)

The plots above compare Bayesian decision-theoretic power curves for $L S_{C V}$ (solid lines), $L S_{F S}$ (Iong dotted lines), and DIC (short dotted lines)

$$
\text { (row 1: } \beta_{0}=0 ; \text { row } 2: \beta_{0}=1 \text {). }
$$

Remarkably, not only is $L S_{F S}$ much quicker computationally than $L S_{C V}$, it's also more accurate at identifying the correct model than $L S_{C V}$ or DIC.

To summarize, in computational efficiency

$$
\begin{equation*}
\text { naive } L S_{C V}<D I C \doteq L S_{F S} \tag{81}
\end{equation*}
$$

and in fixed- and random-effects Poisson modeling the results in model discrimination power are

$$
\begin{equation*}
L S_{C V} \doteq D I C<L S_{F S} \tag{82}
\end{equation*}
$$

What $L S_{F S}$ Is Not

Consider the likelihood part of a (parametric) model $M_{j}:\left(y_{i} \mid \theta_{j}, M_{j}\right) \stackrel{\text { IID }}{\sim} p\left(y_{i} \mid \theta_{j}, M_{j}\right)(j=1,2)$, with prior $p\left(\theta_{j} \mid M_{j}\right)$ for model M_{j}.
The Bayes factor involves comparing quantities of the form

$$
\begin{align*}
p\left(y \mid M_{j}\right) & =\int\left[\prod_{i=1}^{n} p\left(y_{i} \mid \theta_{j}, M_{j}\right)\right] p\left(\theta_{j} \mid M_{j}\right) d \theta_{j} \\
& =E_{\left(\theta_{j} \mid M_{j}\right)} L\left(\theta_{j} \mid y, M_{j}\right) \tag{83}
\end{align*}
$$

i.e., the Bayes factor involves comparing expectations of likelihoods with respect to the priors in the models under comparison (this is why ordinary Bayes factors behave so badly with diffuse priors).

Aitkin (1991) proposed instead posterior Bayes factors): compute the expectations with respect to the posteriors,
i.e., PBF: favor model M_{1} if $\log \bar{L}_{1}^{A}>\log \bar{L}_{2}^{A}$, where

$$
\begin{equation*}
\log \bar{L}_{j}^{A}=\log \int\left[\prod_{i=1}^{n} p\left(y_{i} \mid \theta_{j}, M_{j}\right)\right] p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{j} \tag{84}
\end{equation*}
$$

This solves the problem of sensitivity to a diffuse prior but creates new problems of its own, e.g., it's incoherent.

It may seem at first glance (e.g., O'Hagan and Forster (2004) think so) that PBF is the same thing as $L S_{F S}$: favor model M_{1} if

$$
\begin{equation*}
n L S_{F S}\left(M_{1} \mid y\right)>n L S_{F S}\left(M_{2} \mid y\right) \tag{85}
\end{equation*}
$$

But not so:

$$
\begin{equation*}
n L S_{F S}\left(M_{j} \mid y\right)=\log \prod_{i=1}^{n}\left[\int p\left(y_{i} \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{j}\right] \tag{86}
\end{equation*}
$$

and this is not the same because the integral and product operators do not commute.

What $L S_{F S}$ Is Not (continued)

Also, some people (e.g., Geweke (2005)) like to compare models based on the posterior expectation of the log likelihood (this is one of the ingredients in DIC), and this is not the same as $L S_{F S}$ either: by Jensen's inequality

$$
\begin{align*}
n L S_{F S}\left(M_{j} \mid y\right) & =\sum_{i=1}^{n} \log p\left(y_{i} \mid y, M_{j}\right) \\
& =\sum_{i=1}^{n} \log \int p\left(y_{i} \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{j} \\
& =\sum_{i=1}^{n} \log E_{\left(\theta_{j} \mid y, M_{j}\right)} L\left(\theta_{j} \mid y_{i}, M_{j}\right) \\
& >\sum_{i=1}^{n} E_{\left(\theta_{j} \mid y, M_{j}\right)} \log L\left(\theta_{j} \mid y_{i}, M_{j}\right) \tag{87}\\
& =E_{\left(\theta_{j} \mid y, M_{j}\right)} \sum_{i=1}^{n} \log L\left(\theta_{j} \mid y_{i}, M_{j}\right) \\
& =E_{\left(\theta_{j} \mid y, M_{j}\right)} \log \prod_{i=1}^{n} L\left(\theta_{j} \mid y_{i}, M_{j}\right) \\
& =E_{\left(\theta_{j} \mid y, M_{j}\right)} \log L\left(\theta_{j} \mid y, M_{j}\right)
\end{align*}
$$

[^0]: *I've drawn on something written by David Mackay in creating this explanation of the idea.

